【題目】已知函數(shù)

1)若不等式對任意的恒成立,求實(shí)數(shù)的取值范圍;

2)記表示中的最小值,若函數(shù)內(nèi)恰有一個(gè)零點(diǎn),求實(shí)的取值范圍.

【答案】1;(2

【解析】

1)利用分離參數(shù),并構(gòu)造新的函數(shù),利用導(dǎo)數(shù)判斷的單調(diào)性,并求最值,可得結(jié)果.

2)利用對的分類討論,可得,然后判斷函數(shù)單調(diào)性以及根據(jù)零點(diǎn)存在性定理,可得結(jié)果.

1)由,得,

當(dāng)時(shí),

,

當(dāng)時(shí),

,

∴函數(shù)上遞減,在上遞增,

,,

∴實(shí)數(shù)的取值范圍是

2 ①由(1 得當(dāng)時(shí),,

,

,

函數(shù)內(nèi)恰有一個(gè)零點(diǎn),符合題意

②當(dāng)時(shí),

i.若,

,

故函數(shù)內(nèi)無零點(diǎn)

ii.若,

,

不是函數(shù)的零點(diǎn);

iii.若時(shí),

故只考慮函數(shù)的零點(diǎn),,

時(shí),

,∴函數(shù)上單調(diào)遞增,

,

,

∴函數(shù)上恰有一個(gè)零點(diǎn)

時(shí),

∴函數(shù)上單調(diào)遞減,

,∴函數(shù)上無零點(diǎn),

時(shí),

,,

∴函數(shù)上遞減,在上遞增,

要使上恰有一個(gè)零點(diǎn), 只需,

綜上所述,實(shí)數(shù)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是為參數(shù)).

(1)求直線和曲線的普通方程;

(2)設(shè)直線和曲線交于兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,曲線C的參數(shù)方程是,(為參數(shù)).

(1)求直線被曲線C截得的弦長;

(2)從極點(diǎn)作曲線C的弦,求各弦中點(diǎn)軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,已知平面QBC與直線PA均垂直于所在平面,且PA=AB=AC

)求證:PA∥平面QBC;

)若,求二面角Q-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《基礎(chǔ)教育課程改革綱要(試行)》將“具有良好的心理素質(zhì)”列入新課程的培養(yǎng)目標(biāo).為加強(qiáng)心理健康教育工作的開展,不斷提高學(xué)生的心理素質(zhì),九江市某校高二年級開設(shè)了《心理健康》選修課,學(xué)分為2.學(xué)校根據(jù)學(xué)生平時(shí)上課表現(xiàn)給出“合格”與“不合格”兩種評價(jià),獲得“合格”評價(jià)的學(xué)生給予50分的平時(shí)分,獲得“不合格”評價(jià)的學(xué)生給予30分的平時(shí)分,另外還將進(jìn)行一次測驗(yàn).學(xué)生將以“平時(shí)分×40%+測驗(yàn)分×80%”作為“最終得分”,“最終得分”不少于60分者獲得學(xué)分.

該校高二(1)班選修《心理健康》課的學(xué)生的平時(shí)份及測驗(yàn)分結(jié)果如下:

測驗(yàn)分

[30,40

[4050

[50,60

[60,70

[70,80

[80,90

[90,100]

平時(shí)分50分人數(shù)

0

3

4

4

2

平時(shí)分30分人數(shù)

1

0

0

1)根據(jù)表中數(shù)據(jù)完成如下2×2列聯(lián)表,并分析是否有95%的把握認(rèn)為這些學(xué)生“測驗(yàn)分是否達(dá)到60分”與“平時(shí)分”有關(guān)聯(lián)?

選修人數(shù)

測驗(yàn)分

達(dá)到60

測驗(yàn)分

未達(dá)到60

合計(jì)

平時(shí)分50

平時(shí)分30

合計(jì)

2)若從這些學(xué)生中隨機(jī)抽取1人,求該生獲得學(xué)分的概率.

附:,其中

0.1

0.05

0.025

0.01

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)a時(shí),試判斷函數(shù)f(x)的單調(diào)性;

2)設(shè)g(x),若g(x)有唯一零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市調(diào)查機(jī)構(gòu)在某設(shè)置過街天橋的路口隨機(jī)調(diào)查了110人準(zhǔn)備過馬路的交通參與者對跨越護(hù)欄和走過街天橋的看法,得到如下列聯(lián)表:

合計(jì)

走過街天橋

40

20

60

跨越護(hù)欄

20

30

50

合計(jì)

60

50

110

附:.

0.050

0.010

0.001

K

3.841

6.635

10.828

則可以得到正確的結(jié)論是( )

A.有99%以上的把握認(rèn)為“選擇過馬路的方式與性別有關(guān)”

B.有99%以上的把握認(rèn)為“選擇過馬路的方式與性別無關(guān)”

C.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“選擇過馬路的方式與性別有關(guān)”

D.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“選擇過馬路的方式與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐PABC中,ACBCACBC2,PAPBPC3,OAB中點(diǎn),EPB中點(diǎn).

1)證明:平面PAB⊥平面ABC

2)求點(diǎn)B到平面OEC的距離.

查看答案和解析>>

同步練習(xí)冊答案