【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線,曲線為參數(shù)), 以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)若射線分別交兩點, 求的最大值.

【答案】1, ;(2.

【解析】試題分析:(1)根據(jù)轉(zhuǎn)化即可;(2)首先設(shè)出點的極坐標(biāo),然后利用參數(shù)的幾何意義求解即可.

試題解析:(1C1ρ(cosθsinθ)4,

C2的普通方程為(x1)2y21,所以ρ2cosθ…4

2)設(shè)A(ρ1,α),B(ρ2α),-<α<,

ρ1=,ρ22cosα…6

==×2cosα(cosαsinα)

(cos2αsin2α1)[cos(2α)1], …8

當(dāng)α=時,取得最大值(1)…10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明準(zhǔn)備利用暑假時間去旅游,媽媽為小明提供四個景點,九寨溝、泰山、長白山、武夷山.小明決定用所學(xué)的數(shù)學(xué)知識制定一個方案來決定去哪個景點:(如圖)曲線和直線交于點.以為起點,再從曲線上任取兩個點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為.若去九寨溝;若去泰山;若去長白山; 去武夷山.

(1)若從這六個點中任取兩個點分別為終點得到兩個向量,分別求小明去九寨溝的概率和去泰山的概率;

(2)按上述方案,小明在曲線上取點作為向量的終點,則小明決定去武夷山.點在曲線上運動,若點的坐標(biāo)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是為參數(shù)).

1)求曲線的直角坐標(biāo)方程和直線的的普通方程;

2)設(shè)點,若直線與曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時,上恒成立,求實數(shù)的取值范圍;

(2)當(dāng)時,若函數(shù)上恰有兩個不同的零點,求實數(shù)的取值范圍;

(3)是否存在常數(shù),使函數(shù)和函數(shù)在公共定義域上具有相同的單調(diào)性?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)圖象的兩相鄰對稱軸間的距離為.

(1)求的值;

(2)函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含的同學(xué)獲獎. 按文理科用分層抽樣的方法抽取人的成績作為樣本得到成績的頻率分布直方圖(見下圖).

(1)的值,并計算所抽取樣本的平均值同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)填寫下面的列聯(lián)表,能否有超過的把握認(rèn)為獲獎與學(xué)生的文理科有關(guān)?

文科生

理科生

合計

獲獎

不獲獎

合計

附表及公式:

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率,點在橢圓上.

(1)求橢圓的方程;

(2)設(shè)過點且不與坐標(biāo)軸垂直的直線交橢圓、兩點,線段的垂直平分線與軸交于點,求點的橫坐標(biāo)的取值范圍;

(3)在第(2)問的條件下,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人參加某種選拔測試,在備選的10道題中,甲答對其中每道題的概率都是,乙能答對其中的5道題.規(guī)定每次考試都從備選的10道題中隨機(jī)抽出3道題進(jìn)行測試,答對一題加10分,答錯一題(不答視為答錯)減5分,至少得15分才能入選.

I)求乙得分的分布列和數(shù)學(xué)期望;

II)求甲、乙兩人中至少有一人入選的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的方程為=1(a>b>0),右焦點為F(c,0)(c>0),方程ax2+bx-c=0的兩實根分別為x1,x2,則P(x1,x2)( )

A.必在圓x2+y2=2內(nèi)

B.必在圓x2+y2=2外

C.必在圓x2+y2=1外

D.必在圓x2+y2=1與圓x2+y2=2形成的圓環(huán)之間

查看答案和解析>>

同步練習(xí)冊答案