拋物線y2=4px(p>0)上一點M到焦點的距離為a,則M到y(tǒng)軸距離為( 。
A.a(chǎn)-pB.a(chǎn)+pC.a-
p
2
D.a(chǎn)+2p
∵拋物線方程為y2=4px,p>0
∴拋物線的焦點為F(p,0),準線方程為x=-p
根據(jù)拋物線的定義,點M到焦點的距離等于M到準線的距離,
∴|MF|=a=x+p,解之可得x=a-p,
即M到y(tǒng)軸距離為a-p.
故選:A
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

有一隧道,內(nèi)設(shè)雙行線公路,同方向有兩個車道(共有四個車道),每個車道寬為3m,此隧道的截面由一個長方形和一拋物線構(gòu)成,如圖所示,為保證安全,要求行駛車輛頂部(設(shè)車輛頂部為平頂)與隧道頂部在豎直方向上高度之差至少為0.25m,靠近中軸線的車道為快車道,兩側(cè)的車道為慢車道,則車輛通過隧道時,慢車道的限制高度為______.(精確到0.1m)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點M在拋物線y2=4x上,F(xiàn)是拋物線的焦點,若∠xFM=60°,則FM的長為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線y2=4x上一點A到點B(3,2)與焦點的距離之和最小,則點A的坐標為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)AB為拋物線y2=x上的動弦,且|AB|=2,則弦AB的中點M到y(tǒng)軸的最小距離為( 。
A.2B.
3
4
C.1D.
5
4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過點A(0,2)且和拋物線C:y2=6x相切的直線l方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過拋物線y2=4x的焦點作直線AB交拋物線于A、B,求AB中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線y2=4x,點A為其上一動點,P為OA的中點(O為坐標原點),且點P恒在拋物線C上,
(1)求曲線C的方程;
(2)若M點為曲線C上一點,其縱坐標為2,動直線L交曲線C與T、R兩點:
①證明:當動直線L恒過定點N(4,-2)時,∠TMR為定值;
②幾何畫板演示可知,當∠TMR等于①中的那個定值時,動直線L必經(jīng)過某個定點,請指出這個定點的坐標.(只需寫出結(jié)果,不必證明)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知A、B、C、D分別為過拋物線y2=4x焦點F的直線與該拋物線和圓(x-1)2+y2=1的交點,則|AB|•|CD|=______.

查看答案和解析>>

同步練習冊答案