有一隧道,內設雙行線公路,同方向有兩個車道(共有四個車道),每個車道寬為3m,此隧道的截面由一個長方形和一拋物線構成,如圖所示,為保證安全,要求行駛車輛頂部(設車輛頂部為平頂)與隧道頂部在豎直方向上高度之差至少為0.25m,靠近中軸線的車道為快車道,兩側的車道為慢車道,則車輛通過隧道時,慢車道的限制高度為______.(精確到0.1m)
如圖,以拋物線的對稱軸為y軸,路面為x軸,建立坐標系,
由已知可得,拋物線頂點坐標為(0,6),與x軸的一個交點(8,0),
設拋物線解析式為y=ax2+6,
把(8,0)代入解析式,
得a=-
3
32

所以,拋物線解析式為y=-
3
32
x2+6,
當x=6時,y≈4.3,
∴慢車道的限制高度為 4.3米.
故答案為:4.3.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的右焦點為為上頂點,為坐標原點,若△的面積為,且橢圓的離心率為
(1)求橢圓的方程;
(2)是否存在直線交橢圓于,兩點, 且使點為△的垂心?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y2=4px(p>0)上一點M到焦點的距離為a,則M到y(tǒng)軸距離為( 。
A.a-pB.a+pC.a-
p
2
D.a+2p

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線y2=2px(p>0)焦點的直線交拋物線于A、B兩點,則|AB|的最小值為( 。
A.
p
2
B.pC.2pD.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=x2+4ax-4a+3,y=x2+2ax-2a至少有一條與x軸相交,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某隧道橫截面由拋物線及矩形的三邊組成,尺寸如圖,某卡車空車時可以通過該隧道,現(xiàn)載一集裝箱,箱寬3米,車與箱共高4.5米,問此車能否通過此隧道?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:y2=2px,點P(-1,0)是其準線與x軸的焦點,過P的直線l與拋物線C交于A、B兩點.
(1)當線段AB的中點在直線x=7上時,求直線l的方程;
(2)設F為拋物線C的焦點,當A為線段PB中點時,求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖是拋物線形拱橋,當水面離橋頂4m時,水面寬8m;
(1)試建立坐標系,求拋物線的標準方程;
(2)若水面上升1m,則水面寬是多少米?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左右頂點分別為,離心率
(1)求橢圓的方程;
(2)若點為曲線:上任一點(點不同于),直線與直線交于點,為線段的中點,試判斷直線與曲線的位置關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案