已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的集合:存在非零常數(shù)k,對(duì)定義域中的任意x,等式f(kx)=
k
2
+f(x)恒成立.現(xiàn)有兩個(gè)函數(shù):f(x)=ax+b(a≠0),g(x)=log2x,則函數(shù)f(x)、g(x)與集合M的關(guān)系為( 。
A、f(x)∈M,g(x)∈M
B、f(x)∉M,g(x)∈M
C、f(x)∈M,g(x)∉M
D、f(x)∉M,g(x)∉M
考點(diǎn):函數(shù)恒成立問題,元素與集合關(guān)系的判斷
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:分別對(duì)兩個(gè)函數(shù),利用存在非零常數(shù)k,對(duì)定義域中的任意x,等式f(kx)=
k
2
+f(x)恒成立,即可得出結(jié)論.
解答: 解:(1)若f(x)=ax+b∈M,則存在非零常數(shù)k,對(duì)任意x∈D均有f(kx)=akx+b=
k
2
+f(x),
即a(k-1)x=
k
2
恒成立,得
k-1=0
k=0
無解,所以f(x)∉M.
(2)log2(kx)=
k
2
+log2x,則log2k=
k
2
,k=4,k=2時(shí)等式恒成立,所以f(x)=log2x∈M.
故選:B.
點(diǎn)評(píng):本題考查函數(shù)恒成立問題,考查新定義,正確理解新定義是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2014年1月8日是傳統(tǒng)的臘八節(jié),大家開始購買年貨,某淘寶網(wǎng)店趁勢(shì)推出“搶紅包”的促銷活動(dòng),已知每人有5次搶紅包的機(jī)會(huì),每次可得1至30元不等的紅包,甲、乙二人在這5次搶紅包活動(dòng)中獲得紅包金額的莖葉圖如圖所示,若甲5次獲得紅包金額的均值為
.
x1
,乙5次獲得紅包金額的均值為
x2
,則
.
x1
-
.
x2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

非零向量
a
b
滿足|
a
|=|
b
|=
3
3
|
a
+
b
|,則
a
b
的夾角大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于R上可導(dǎo)的任意函數(shù)f(x),若滿足(2-x)f′(x)≤0,則必有(  )
A、f(1)+f(3)<2f(2)
B、f(1)+f(3)≤2f(2)
C、f(1)+f(3)>2f(2)
D、f(1)+f(3)≥2f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,運(yùn)行該程序框圖輸出的s值為(  )
A、66B、55C、11D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出結(jié)果S的值為( 。
A、
1
2
B、0
C、-
3
2
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果實(shí)數(shù)x、y滿足條件
x-y+1≥0
y+1≥0
x+y+1≤0
,那么z=-2x+y的最大值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心在直線y=2x上,半徑為
5
且與直線2x+y+1=0相切的圓的方程為(  )
A、(x-2)2+(y-1)2=5
B、(x-1)2+(y-2)2=5
C、(x-2)2+(y-1)2=25
D、(x-1)2+(y-2)2=25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,且公差不為0,{bn}為等比數(shù)列,a1=b1=1,a2=b2,a4=b3
(Ⅰ)求{an}的通項(xiàng)公式.
(Ⅱ)設(shè)cn=n2an,其前n項(xiàng)和為Sn,求證:3≤
3
S1
+
5
S2
+…+
2n+1
Sn
<4.

查看答案和解析>>

同步練習(xí)冊(cè)答案