如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,四邊形A1ACC1是邊長(zhǎng)為2的正方形,AB=BC=
2

(1)求證:BC⊥AB1;
(2)求三棱錐 B1-ABC1的體積.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,直線與平面垂直的性質(zhì)
專題:空間位置關(guān)系與距離
分析:(1)證明BC⊥AA1,BC⊥AB,推出BC⊥平面 ABB1A1,然后利用直線與平面垂直的性質(zhì)定理證明 BC⊥AB1
(2)直接利用三棱錐的體積與三棱柱的體積關(guān)系,轉(zhuǎn)化求解三棱錐的體積即可.
解答: (1)證明:∵AA1⊥平面ABC,∴BC⊥AA1,
又∵AB=BC=
2
,AC=2,
∴AC2=A B2+BC2,
∴BC⊥AB,
而 AA1∩AB=A,且AA1、AB?平面ABB1A1
∴BC⊥平面ABB1A1,
而AB1?平面ABB1A1
故BC⊥AB1

(2)解:∵VB1-ABC1=VC1-ABB1=
1
3
×
1
2
S矩形ABB1A1×B1C1
=
1
3
×
1
2
×2×
2
×
2
=
2
3
點(diǎn)評(píng):本題考查直線與平面垂直的性質(zhì)定理的應(yīng)用,幾何體的體積的求法,考查計(jì)算能力以及邏輯推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={x|y=
x
},B={y|y=log2x,x>0},則A∩B等于( 。
A、RB、∅
C、[0,+∞)D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求定積分:
(1)
2
1
x2-2x-3
x
dx;
(2)
4
1
x
(1-
x
)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xcos
πx
λ
,存在f(x)的零點(diǎn)x0,(x0≠0),滿足[f′(x0)]2<π2(λ2-x02),則λ的取值范圍是(  )
A、(-
3
,0)∪(0,
3
,)
B、(-
3
3
,0)∪(0,
3
3
C、(-∞,-
3
)∪(
3
,+∞)
D、(-∞,-
3
3
)∪(
3
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a,b,c,d},集合B={e,f},其中a,b,c,d,e,f均為實(shí)數(shù).
(1)從集合A到集合B能構(gòu)成多少個(gè)不同的映射?
(2)能構(gòu)成多少個(gè)以集合A為定義域,集合B為值域的不同函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別是(-
2
,0),(
2
,0),點(diǎn)G是△ABC的重心,y軸上一點(diǎn)M滿足GM∥AB,且|MC|=|MB|.
(Ⅰ)求△ABC的頂點(diǎn)C的軌跡E的方程;
(Ⅱ)不過(guò)點(diǎn)A的直線l與軌跡E交于不同的兩點(diǎn)P,Q.若以PQ為直徑的圓過(guò)點(diǎn)A時(shí),試判斷直線l是否過(guò)定點(diǎn)?若過(guò),請(qǐng)求出定點(diǎn)坐標(biāo),不過(guò),說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等比數(shù)列,首項(xiàng)a1=1,公比q>0,其前n項(xiàng)和為Sn,且S1+a1,S3+a3,S2+a2成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足an+1=(
1
2
 anbn,Tn為數(shù)列{bn}的前n項(xiàng)和,若Tn≥m恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)隨機(jī)變量ξ服從正態(tài)分布 N(μ,σ2),若方程x2+4x+ξ=0沒(méi)有實(shí)根的概率是
1
2
,則μ=(  )
A、1B、2C、4D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2,1),
b
=(3,λ),若(2
a
-
b
)⊥
b
,則λ的值為(  )
A、3B、-1
C、-1或3D、-3或1

查看答案和解析>>

同步練習(xí)冊(cè)答案