已知向量
a
=(2,1),
b
=(3,λ),若(2
a
-
b
)⊥
b
,則λ的值為( 。
A、3B、-1
C、-1或3D、-3或1
考點(diǎn):數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系
專題:平面向量及應(yīng)用
分析:由向量的坐標(biāo)運(yùn)算和垂直關(guān)系可得λ的方程,解方程可得.
解答: 解:∵向量
a
=(2,1),
b
=(3,λ),
∴2
a
-
b
=(1,2-λ),
∵(2
a
-
b
)⊥
b

∴(2
a
-
b
)•
b
=3×1+λ(2-λ)=0,
解得λ=-1或λ=3
故選:C
點(diǎn)評(píng):本題考查平面向量的數(shù)量積與向量的垂直關(guān)系,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,四邊形A1ACC1是邊長(zhǎng)為2的正方形,AB=BC=
2

(1)求證:BC⊥AB1;
(2)求三棱錐 B1-ABC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知質(zhì)點(diǎn)M按規(guī)律s=2t2+3做直線運(yùn)動(dòng)(位移單位:cm,時(shí)間單位:s).
(1)當(dāng)t=2,△t=0.01時(shí),求
△s
△t
;   
(2))當(dāng)t=2,△t=0.001時(shí),求
△s
△t
;   
(3)當(dāng)質(zhì)點(diǎn)M在t=2時(shí)的瞬時(shí)速度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)P為拋物線上的動(dòng)點(diǎn),點(diǎn)M為其準(zhǔn)線上的動(dòng)點(diǎn),若△FPM為邊長(zhǎng)是12的等邊三角形,則此拋物線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面α與平面β相交于直線m,直線a在平面α內(nèi),直線b在平面β內(nèi),且b⊥m,則“α⊥β”是“a⊥b”的( 。
A、必要不充分條件
B、充分不必要條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象,如圖所示,f(0)=-
3
2
,則A的值是(  )
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)y=x+k(k∈Z)的圖象與二次函數(shù)y=x2的圖象交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求:
(1)
OA
,
OB
的數(shù)量積;
(2)當(dāng)k為何值時(shí)
OA
OB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R,滿足x2+2xy+4y2=6,則z=x2+4y2的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正四棱錐P-ABCD的底面積為3,體積為
2
2
,E為側(cè)棱PC的中點(diǎn),則PA與BE所成的角為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案