【題目】某網(wǎng)絡(luò)平臺(tái)從購買該平臺(tái)某課程的客戶中,隨機(jī)抽取了100位客戶的數(shù)據(jù),并將這100個(gè)數(shù)據(jù)按學(xué)時(shí)數(shù),客戶性別等進(jìn)行統(tǒng)計(jì),整理得到如表:
學(xué)時(shí)數(shù) |
| ||||||
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根據(jù)上表估計(jì)男性客戶購買該課程學(xué)時(shí)數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留小數(shù)點(diǎn)后兩位);
(2)從這100位客戶中,對(duì)購買該課程學(xué)時(shí)數(shù)在20以下的女性客戶按照分層抽樣的方式隨機(jī)抽取7人,再從這7人中隨機(jī)抽取2人,求這2人購買的學(xué)時(shí)數(shù)都不低于15的概率.
(3)將購買該課程達(dá)到25學(xué)時(shí)及以上者視為“十分愛好該課程者”,25學(xué)時(shí)以下者視,為“非十分愛好該課程者”.請(qǐng)根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為“十分愛好該課程者”與性別有關(guān)?
非十分愛好該課程者 | 十分愛好該課程者 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) | 100 |
附:,
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)平均值為.(2)(3)見解析
【解析】
根據(jù)平均數(shù)的公式進(jìn)行計(jì)算即可;利用分層抽樣的方法,利用列舉法結(jié)合古典概型的概率公式進(jìn)行計(jì)算即可;完成列聯(lián)表,計(jì)算的值,利用獨(dú)立性檢驗(yàn)的性質(zhì)進(jìn)行判斷即可.
由題意知,在100位購買該課程的客戶中,男性客戶購買該課程學(xué)時(shí)數(shù)的平均值為
;
所以估計(jì)男性客戶購買該課程學(xué)時(shí)數(shù)的平均值為.
設(shè)“所抽取的2人購買的學(xué)時(shí)數(shù)都不低于15為事件A,
依題意按照分層抽樣的方式分別在學(xué)時(shí)數(shù)為,,的女性客戶中抽取1人設(shè)為,2人設(shè)為A,
4人,設(shè)為,,,,從7人中隨機(jī)抽取2人所包含的基木事件為:
aA,aB,,,,,AB,,,,,,,,,,,,,,,共21種,
其中事件A所包含的基本事件為:,,,,,,共6個(gè),
則事件A發(fā)生的概率.
依題意得列聯(lián)表如下
非十分愛好該課程者 | 十分愛好該課程者 | 合計(jì) | |
男性 | 48 | 12 | 60 |
女性 | 16 | 24 | 40 |
合計(jì) | 64 | 36 | 100 |
則.
故有的把握認(rèn)為“十分愛好該課程者”與性別有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“科技引領(lǐng),布局未來”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動(dòng)力量.2007年至2018年,某企業(yè)連續(xù)12年累計(jì)研發(fā)投入達(dá)4100億元,我們將研發(fā)投入與經(jīng)營收入的比值記為研發(fā)投入占營收比.這12年間的研發(fā)投入(單位:十億元)用圖中的條形圖表示,研發(fā)投入占營收比用圖中的折線圖表示.
根據(jù)折線圖和條形圖,下列結(jié)論錯(cuò)誤的是( 。
A. 2012﹣2013 年研發(fā)投入占營收比增量相比 2017﹣2018 年增量大
B. 該企業(yè)連續(xù) 12 年研發(fā)投入逐年增加
C. 2015﹣2016 年研發(fā)投入增值最大
D. 該企業(yè)連續(xù) 12 年研發(fā)投入占營收比逐年增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:;
(2)用表示中的最大值,記,討論函數(shù)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱柱中,側(cè)棱底面,,,,,為棱的中點(diǎn).
(1)證明:;
(2)求二面角的正弦值;
(3)設(shè)點(diǎn)在線段上,且直線與平面所成角的正弦值是,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓的方程為.
(1)若圓上有兩點(diǎn),關(guān)于直線對(duì)稱,且,求直線的方程;
(2)圓與軸相交于,兩點(diǎn),圓內(nèi)的動(dòng)點(diǎn)使,,成等比數(shù)列,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)滿足,記點(diǎn)的軌跡為.斜率為的直線過點(diǎn),且與軌跡相交于兩點(diǎn).
(1)求軌跡的方程;
(2)求斜率的取值范圍;
(3)在軸上是否存在定點(diǎn),使得無論直線繞點(diǎn)怎樣轉(zhuǎn)動(dòng),總有成立?如果存在,求出定點(diǎn);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體,是將高為2、底面半徑為1的圓柱沿過旋轉(zhuǎn)軸的平面切開后,將其中一半沿切面向右水平平移后形成的封閉體.分別為的中點(diǎn),為弧的中點(diǎn),為弧的中點(diǎn).
(1)求直線與底面所成的角的大小;
(2)求異面直線與所成的角的大小(結(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的左、右焦點(diǎn)分別為,,離心率,點(diǎn)在橢圓C上,直線l過交橢圓于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)時(shí),點(diǎn)A在x軸上方時(shí),求點(diǎn)A,B的坐標(biāo);
(3)若直線交y軸于點(diǎn)M,直線交y軸于點(diǎn)N,是否存在直線l,使得與的面積滿足,若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com