【題目】定義:若函數(shù)的圖像經(jīng)過變換后所得的圖像對應(yīng)的函數(shù)與的值域相同,則稱變換是的同值變換,下面給出了四個函數(shù)與對應(yīng)的變換:
①將函數(shù)的圖像關(guān)于軸作對稱變換;
②將函數(shù)的圖像關(guān)于軸作對稱變換;
③將函數(shù)的圖像關(guān)于點(diǎn)(-1,1)作對稱變換;
④將函數(shù)的圖像關(guān)于點(diǎn)(-1,0)作對稱變換;
其中是的同值變換的有_______.(寫出所有符合題意的序號)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,四邊形為矩形,且平面,.
(1)求證:平面;
(2)點(diǎn)在線段上運(yùn)動,當(dāng)點(diǎn)在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校象棋社團(tuán)組織中國象棋比賽,采用單循環(huán)賽制,即要求每個參賽選手必須且只須和其他選手各比賽一場,勝者得分,負(fù)者得分,平局兩人各得分.若冠軍獲得者得分比其他人都多,且獲勝場次比其他人都少,則本次比賽的參賽人數(shù)至少為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)令,判斷函數(shù)的奇偶性,并說明理由;
(2)令,的最大值為A,函數(shù)在區(qū)間上單調(diào)遞增函數(shù),求的取值范圍;
(3)令,將函數(shù)的圖像向左平移個單位,再向上平移1個單位,得到函數(shù)的圖像,對任意,求在區(qū)間上零點(diǎn)個數(shù)的所有可能值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在常數(shù),使得數(shù)列滿足對一切恒成立,則稱為可控?cái)?shù)列,.
(1)若,,問有多少種可能?
(2)若是遞增數(shù)列,,且對任意的,數(shù)列,,成等差數(shù)列,判斷是否為可控?cái)?shù)列?說明理由;
(3)設(shè)單調(diào)的可控?cái)?shù)列的首項(xiàng),前項(xiàng)和為,即.問的極限是否存在,若存在,求出與的關(guān)系式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為且滿足:
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)求的值;
(3)是否存在大于2的正整數(shù)使得?若存在,求出所有符合條件的若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若是函數(shù)的一個極值點(diǎn),試求的單調(diào)區(qū)間;
(2)若且,是否存在實(shí)數(shù)a,使得在區(qū)間上的最大值為4?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩鐵路線垂直相交于站,若已知千米,甲火車從站出發(fā),沿方向以千米小時的速度行駛,同時乙火車從站出發(fā),沿方向,以千米小時的速度行駛,至站即停止前行(甲車扔繼續(xù)行駛)(兩車的車長忽略不計(jì)).
(1)求甲、乙兩車的最近距離(用含的式子表示);
(2)若甲、乙兩車開始行駛到甲,乙兩車相距最近時所用時間為小時,問為何值時最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,其中.
(1)若,寫出的單調(diào)區(qū)間:
(2)若函數(shù)恰有三個不同的零點(diǎn),且這些零點(diǎn)之和為-2,求a、b的值;
(3)若函數(shù)在上有四個不同零點(diǎn),求的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com