【題目】設函數(shù)f(x)=x2﹣ax+b.
(1)若不等式f(x)<0的解集是{x|2<x<3},求不等式bx2﹣ax+1>0的解集;
(2)當b=3﹣a時,對任意的x∈(﹣1,0]都有f(x)≥0成立,求實數(shù)a的取值范圍.
【答案】
(1)解:∵不等式x2﹣ax+b<0的解集是{x|2<x<3},
∴x=2,x=3是方程x2﹣ax+b=0的解,
由韋達定理得:a=5,b=6,
故不等式bx2﹣ax+1>0為6x2﹣5x+1>0,
解不等式6x2﹣5x+1>0,
得其解集為{x|x< 或x> }
(2)解:據(jù)題意x∈(﹣1,0],f(x)=x2﹣ax+3﹣a≥0恒成立,
則可轉(zhuǎn)化為a≤ ,
設t=x+1,則t∈(0,1],
= =t+ ﹣2關于t遞減,
所以 =1+4﹣2=3,
∴a≤3
【解析】(1)根據(jù)二次函數(shù)的性質(zhì)求出a,b的值,解不等式求出其解集即可;(2)問題轉(zhuǎn)化為a≤ ,設t=x+1,則t∈(0,1],從而求出a的范圍即可.
【考點精析】解答此題的關鍵在于理解函數(shù)的值域的相關知識,掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的,以及對二次函數(shù)的性質(zhì)的理解,了解當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減.
科目:高中數(shù)學 來源: 題型:
【題目】對任意m∈R,直線mx﹣y+1=0與圓x2+y2=r2(r>0)交于不同的兩點A、B,且存在m使| + |≥| |(O是坐標原點)成立,那么r的取值范圍是( )
A.0<r≤
B.1<r<
C.1<r≤
D.r>
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:關于x的方程ax2+2x+1=0至少有一個負根,q:a≤1,則¬p是¬q的( )
A.充要條件
B.充分不必要條件
C.必要不充分條件
D.不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分)如圖,四棱錐的底面ABCD 是平行四邊形,平面PBD⊥平面 ABCD, PB=PD, ⊥, ⊥, , 分別是, 的中點,連結(jié).求證:
(1)∥平面;
(2)⊥平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】航空測量組的飛機航線和山頂在同一鉛直平面內(nèi),已知飛機的高度為海拔10000m,速度為180km(千米)/h(小時),飛機先看到山頂?shù)母┙菫?5°,經(jīng)過420s(秒)后又看到山頂?shù)母┙菫?5°,求山頂?shù)暮0胃叨龋ㄈ? , ).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| ﹣ |= ,求證: ⊥ ;
(2)設 =(0,1),若 + = ,求α,β的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個水輪的半徑為4m,水輪圓心O距離水面2m,已知水輪每分鐘轉(zhuǎn)動5圈,如果當水輪上點P從水中浮現(xiàn)時(圖中點p0)開始計算時間.
(1)將點p距離水面的高度z(m)表示為時間t(s)的函數(shù);
(2)點p第一次到達最高點大約需要多少時間?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖F1、F2是橢圓C1:+y2=1與雙曲線C2的公共焦點,A、B分別是C1、C2在第二、四象限的公共點,若四邊形AF1BF2為矩形,則C2的離心率是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com