【題目】如圖F1、F2是橢圓C1:+y2=1與雙曲線C2的公共焦點,A、B分別是C1、C2在第二、四象限的公共點,若四邊形AF1BF2為矩形,則C2的離心率是( )
A. B. C. D.
【答案】D
【解析】試題分析:不妨設(shè)|AF1|=x,|AF2|=y,依題意,解此方程組可求得x,y的值,利用雙曲線的定義及性質(zhì)即可求得C2的離心率.
解:設(shè)|AF1|=x,|AF2|=y,∵點A為橢圓C1:+y2=1上的點,
∴2a=4,b=1,c=;
∴|AF1|+|AF2|=2a=4,即x+y=4;①
又四邊形AF1BF2為矩形,
∴+=,即x2+y2=(2c)2==12,②
由①②得:,解得x=2﹣,y=2+,設(shè)雙曲線C2的實軸長為2m,焦距為2n,
則2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,
∴雙曲線C2的離心率e===.
故選D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣ax+b.
(1)若不等式f(x)<0的解集是{x|2<x<3},求不等式bx2﹣ax+1>0的解集;
(2)當(dāng)b=3﹣a時,對任意的x∈(﹣1,0]都有f(x)≥0成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+x2 (a為實常數(shù)).
(1)當(dāng)a=﹣4時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[1,e]時,討論方程f(x)=0根的個數(shù);
(3)若 a>0,且對任意的x1 , x2∈[1,e],都有|f(x1)﹣f(x2)| ,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線y2=2x的焦點為F,過點M( ,0)的直線與拋物線相交于A,B兩點,與拋物線的準(zhǔn)線相交于C,|BF|=2,則△BCF和△ACF的面積之比為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶算法是中國南宋時期的數(shù)學(xué)家秦九韶提出的一種多項式簡化算法,對于求一個n次多項式函數(shù)fn(x)=anxn+an﹣1xn﹣1+…+a1x+a0的具體函數(shù)值,運(yùn)用常規(guī)方法計算出結(jié)果最多需要n次加法和 乘法,而運(yùn)用秦九韶算法由內(nèi)而外逐層計算一次多項式的值的算法至多需要n次加法和n次乘法.對于計算機(jī)來說,做一次乘法運(yùn)算所用的時間比做一次加法運(yùn)算要長得多,所以此算法極大地縮短了CPU運(yùn)算時間,因此即使在今天該算法仍具有重要意義.運(yùn)用秦九韶算法計算f(x)=0.5x6+4x5﹣x4+3x3﹣5x當(dāng)x=3時的值時,最先計算的是( )
A.﹣5×3=﹣15
B.0.5×3+4=5.5
C.3×33﹣5×3=66
D.0.5×36+4×35=1336.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠對一批產(chǎn)品的質(zhì)量進(jìn)行了抽樣檢測,右圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖.已知樣本中產(chǎn)品凈重在[70,75)克的個數(shù)是8個.
(Ⅰ)求樣本容量;
(Ⅱ)若從凈重在[60,70)克的產(chǎn)品中任意抽取2個,求抽出的2個產(chǎn)品恰好是凈重在[65,70)的產(chǎn)品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知☉O1與☉O2相交于A,B兩點,過點A作☉O1的切線交☉O2于點C,過點B作兩圓的割線,分別交☉O1、☉O2于點D、E,DE與AC相交于點P.若AD是☉O2的切線,且PA=6,PC=2,BD=9,則AB的長為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計,顧客采用的付款期數(shù)的分布列為:
1 | 2 | 3 | 4 | 5 | |
0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商場經(jīng)銷該商品,可采用不同形式的分期付款,付款的期數(shù)(單位: )與商場經(jīng)銷一件商品的利潤(單位:元)滿足如下關(guān)系:
(Ⅰ)若記事件“購買該商品的3位顧客中,至少有1位采用一次性全額付款方式”為,試求事件的概率;
(Ⅱ)求商場經(jīng)銷一件商品的利潤的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其定義域為 (),設(shè).
(Ⅰ)試確定 的取值范圍,使得函數(shù)在上為單調(diào)函數(shù);
(Ⅱ)試判斷的大小并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com