【題目】已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| ﹣ |= ,求證: ⊥ ;
(2)設(shè) =(0,1),若 + = ,求α,β的值.
【答案】
(1)解:由 =(cosα,sinα), =(cosβ,sinβ),
則 =(cosα﹣cosβ,sinα﹣sinβ),
由 =2﹣2(cosαcosβ+sinαsinβ)=2,
得cosαcosβ+sinαsinβ=0.
所以 .即 ;
(2)解:由
得 ,①2+②2得: .
因為0<β<α<π,所以0<α﹣β<π.
所以 , ,
代入②得: .
因為 .所以 .
所以,
【解析】(1)由給出的向量 的坐標(biāo),求出 的坐標(biāo),由模等于 列式得到cosαcosβ+sinαsinβ=0,由此得到結(jié)論;(2)由向量坐標(biāo)的加法運(yùn)算求出 + ,由 + =(0,1)列式整理得到 ,結(jié)合給出的角的范圍即可求得α,β的值.
【考點精析】根據(jù)題目的已知條件,利用兩角和與差的余弦公式和兩角和與差的正弦公式的相關(guān)知識可以得到問題的答案,需要掌握兩角和與差的余弦公式:;兩角和與差的正弦公式:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題的是( )
A.已知f(x)=sin2x+ ,則f(x)的最小值是2
B.已知數(shù)列{an}的通項公式為an=n+ ,則{an}的最小項為2
C.已知實數(shù)x,y滿足x+y=2,則xy的最大值是1
D.已知實數(shù)x,y滿足xy=1,則x+y的最小值是2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)已知數(shù)列(, )滿足, 其中, .
(1)當(dāng)時,求關(guān)于的表達(dá)式,并求的取值范圍;
(2)設(shè)集合.
①若, ,求證: ;
②是否存在實數(shù), ,使, , 都屬于?若存在,請求出實數(shù), ;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣ax+b.
(1)若不等式f(x)<0的解集是{x|2<x<3},求不等式bx2﹣ax+1>0的解集;
(2)當(dāng)b=3﹣a時,對任意的x∈(﹣1,0]都有f(x)≥0成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級學(xué)生中隨機(jī)抽取50名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.
(1)若該校高一年級共有學(xué)生1000人,試估計成績不低于60分的人數(shù);
(2)為了幫助學(xué)生提高數(shù)學(xué)成績,學(xué)校決定在隨機(jī)抽取的50名學(xué)生中成立“二幫一”小組,即從成績[90,100]中選兩位同學(xué),共同幫助[40,50)中的某一位同學(xué).已知甲同學(xué)的成績?yōu)?2分,乙同學(xué)的成績?yōu)?5分,求甲、乙恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),若x1∈[﹣1,2],x2∈[﹣1,2],使得f(x1)=g(x2),則實數(shù)a的取值范圍是( )
A.
B.
C.(0,3]
D.[3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個體服裝店經(jīng)營某種服裝,在某周內(nèi)獲純利y(元)與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系如下表
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
(1)求純利y與每天銷售件數(shù)x之間的回歸方程;
(2)若該周內(nèi)某天銷售服裝20件,估計可獲純利多少元?
已知: x =280, y =45309, xiyi=3487, = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+x2 (a為實常數(shù)).
(1)當(dāng)a=﹣4時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[1,e]時,討論方程f(x)=0根的個數(shù);
(3)若 a>0,且對任意的x1 , x2∈[1,e],都有|f(x1)﹣f(x2)| ,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知☉O1與☉O2相交于A,B兩點,過點A作☉O1的切線交☉O2于點C,過點B作兩圓的割線,分別交☉O1、☉O2于點D、E,DE與AC相交于點P.若AD是☉O2的切線,且PA=6,PC=2,BD=9,則AB的長為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com