【題目】
在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6位選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如下圖所示的莖葉圖.為了增加結(jié)果的神秘感,主持人暫時(shí)沒有公布甲、乙兩班最后一位選手的成績.
(Ⅰ)求乙班總分超過甲班的概率;
(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.請你從平均分和方差的角度來分析兩個(gè)班的選手的情況.
【答案】(Ⅰ);(Ⅱ)甲班選手間的實(shí)力相當(dāng),相差不大,乙班選手間實(shí)力懸殊,差距較大.
【解析】試題分析:(Ⅰ)先分別求出甲班前5位選手的總分和乙班前5位選手的總分,由此利用列舉法能求出乙班總分超過甲班的概率;(Ⅱ)分別求出甲、乙兩班的平均分、方差,由此能求出結(jié)果.
試題解析:(Ⅰ)甲班前5位選手的總分為,
乙班前5位選手的總分為,
若乙班總分超過甲班,則甲、乙兩班第六位選手的成績可分別為,,三種.
所以,乙班總分超過甲班的概率為.
(Ⅱ)甲班平均分為,
乙班平均分為,
,.
兩班的平均分相同,但甲班選手的方差小于乙班,所以甲班選手間的實(shí)力相當(dāng),相差不大,乙班選手間實(shí)力懸殊,差距較大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 滿足關(guān)系(其中是常數(shù)).
()如果, ,求函數(shù)的值域;
()如果, ,且對任意,存在, ,使得恒成立,求的最小值;
()如果,求函數(shù)的最小正周期(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)若函數(shù)在處的切線方程為,求和的值;
(II)討論方程的解的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)f(x)滿足f(2+x)=f(2-x),對于x∈R恒成立,且f(x)=0的兩個(gè)實(shí)數(shù)根的平方和為10,f(x)的圖象過點(diǎn)(0,3),求f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的右焦點(diǎn)與拋物線的焦點(diǎn)重合,點(diǎn)M在橢圓E上.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),直線與橢圓E交于A,B兩點(diǎn),若直線PA,PB關(guān)于x軸對稱,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個(gè)面積為2的等腰直角三角形,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)點(diǎn)在橢圓上,點(diǎn)在直線上,且,求證:為定值;
(3)設(shè)點(diǎn)在橢圓上運(yùn)動,,且點(diǎn)到直線的距離為常數(shù),求動點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信紅包是一款可以實(shí)現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機(jī)應(yīng)用.某網(wǎng)絡(luò)運(yùn)營商對甲、乙兩個(gè)品牌各5種型號的手機(jī)在相同環(huán)境下?lián)尩降募t包個(gè)數(shù)進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):
手機(jī)品牌 型號 | I | II | III | IV | V |
甲品牌(個(gè)) | 4 | 3 | 8 | 6 | 12 |
乙品牌(乙) | 5 | 7 | 9 | 4 | 3 |
手機(jī)品牌 紅包個(gè)數(shù) | 優(yōu) | 非優(yōu) | 合計(jì) |
甲品牌(個(gè)) | |||
乙品牌(個(gè)) | |||
合計(jì) |
(1)如果搶到紅包個(gè)數(shù)超過5個(gè)的手機(jī)型號為“優(yōu)”,否則為“非優(yōu)”,請完成上述2×2列聯(lián)表,據(jù)此判斷是否有85%的把握認(rèn)為搶到的紅包個(gè)數(shù)與手機(jī)品牌有關(guān)?
(2)如果不考慮其他因素,要從甲品牌的5種型號中選出3種型號的手機(jī)進(jìn)行大規(guī)模宣傳銷售.
①求在型號I被選中的條件下,型號II也被選中的概率;
②以表示選中的手機(jī)型號中搶到的紅包超過5個(gè)的型號種數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題、代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況統(tǒng)計(jì)如下表:(單位:人)
立體幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計(jì) | 30 | 20 | 50 |
(1)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?
(2)經(jīng)統(tǒng)計(jì)得,選擇做立體幾何題的學(xué)生正答率為,且答對的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進(jìn)行研究,記抽取的兩人中答對的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com