【題目】已知橢圓E的右焦點與拋物線的焦點重合,點M在橢圓E上.

(Ⅰ)求橢圓E的標準方程;

(Ⅱ)設,直線與橢圓E交于A,B兩點,若直線PA,PB關于x軸對稱,求的值.

【答案】(Ⅰ);(Ⅱ) .

【解析】試題分析:(1)求出拋物線的焦點,可得橢圓的焦點,即,再由橢圓的定義,結(jié)合兩點的距離公式,可得,由的關系,可得,進而得到橢圓方程;
(2)由題意可得,設,運用兩點的斜率公式和點在直線上,將直線代入橢圓方程,運用韋達定理,代入可得的方程,化簡整理,解方程可得的值.

試題解析:

(Ⅰ) 因為拋物線的焦點坐標為,所以,

所以,

.因為,

所以橢圓E的方程為.

(Ⅱ)設

聯(lián)立,

所以, ①

因為直線PA, PB關于x軸對稱,

所以

,

通分得,

所以

整理,得. ②

將①代入②,得 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】通過研究學生的學習行為,專家發(fā)現(xiàn),學生的注意力著老師講課時間的變化而變化,講課開始時,學生的興趣激增;中間有一段時間,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散,f(t)表示學生注意力隨時間t(分鐘)的變化規(guī)律\left(f(t)越大,表明學生注意力越集中),經(jīng)過實驗分析得知:

(1)講課開始后多少分鐘,學生的注意力最集中?能持續(xù)多少分鐘?

(2)講課開始后5分鐘與講課開始后25分鐘比較,何時學生的注意力更集中?

(3)一道數(shù)學難題,需要講解24分鐘,并且要求學生的注意力至少達到180,那么經(jīng)過適當安排,教師能否在學生達到所需的狀態(tài)下講授完這道題目?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)是定義在[-1,0)∪(0,1]上的奇函數(shù),當x∈[-1,0)時,f(x)=2x+ (x∈R).

(1)當x∈(0,1]時,求f(x)的解析式.

(2)判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的圓臺中,是下底面圓的直徑,是上底面圓的直徑,是圓臺的一條母線.

()已知,分別為的中點,求證:平面

()已知,,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x+4)+f(x-1)=x2-2x,其中f(x)是二次函數(shù),求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6位選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如下圖所示的莖葉圖.為了增加結(jié)果的神秘感,主持人暫時沒有公布甲、乙兩班最后一位選手的成績.

(Ⅰ)求乙班總分超過甲班的概率;

(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.請你從平均分和方差的角度來分析兩個班的選手的情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了讓貧困地區(qū)的孩子們過一個溫暖的冬天,某校陽光志愿者社團組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內(nèi)容有兩項:①到各班做宣傳,倡議同學們積極捐獻冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實際情況,只參與其中的某一項工作.相關統(tǒng)計數(shù)據(jù)如下表所示:

(1)如果用分層抽樣的方法從參與兩項工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?

(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12分)已知

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設,若存在使得成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將圓的一組等分點分別涂上紅色或藍色,從任意一點開始,按逆時針方向依次記錄個點的顏色,稱為該圓的一個階段序,當且僅當兩個階色序?qū)恢蒙系念伾辽儆幸粋不相同時,稱為不同的階色序.若某圓的任意兩個階段序均不相同,則稱該圓為階魅力圓.3階魅力圓中最多可有的等分點個數(shù)為

A.4 B.6

C. 8 D.10

查看答案和解析>>

同步練習冊答案