【題目】已知各項(xiàng)均為正數(shù)的兩個(gè)數(shù)列滿足.且

1)求證數(shù)列為等差數(shù)列;

2)求數(shù)列的通項(xiàng)公式;

3)設(shè)數(shù)列,的前n項(xiàng)和分別為,,求使得等式成立的有序數(shù)對(duì)

【答案】1)證明見(jiàn)解析;(2;(3)見(jiàn)解析.

【解析】

1)根據(jù)遞推關(guān)系可得,從而得到數(shù)列是等差數(shù)列;

2)分別求出數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)的通項(xiàng)公式,進(jìn)而整合數(shù)列的通項(xiàng)公式;

3)求出,,代入中,則存在,使得,從而,再證明不成立,從而得到

1)由

因?yàn)閿?shù)列各項(xiàng)均為正數(shù),所以,即,

故數(shù)列是公差為1的等差數(shù)列.

2)由(1)及

,得

所以,上面兩式相除得,

所以數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)都是公比為4的等比數(shù)列.

,所以

所以

綜上,數(shù)列的通項(xiàng)公式為

3)由(1)和(2)知

,得,即

則必存在,使得,,從而

,則,故

又因?yàn)?/span>,所以

這與矛盾,所以.由于,則只能

此時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列命題:

①函數(shù)上單調(diào)遞減,在上單調(diào)遞增;

②若函數(shù)上有兩個(gè)零點(diǎn),則的取值范圍是

③當(dāng)時(shí),函數(shù)的最大值為0

④函數(shù)上單調(diào)遞減;

上述命題正確的是_________(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某外國(guó)語(yǔ)學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績(jī)分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎(jiǎng).按女生、男生用分層抽樣的方法抽取人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖如圖所示.

(Ⅰ)求的值,并計(jì)算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(Ⅱ)填寫(xiě)下面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過(guò)的前提下能否認(rèn)為“獲獎(jiǎng)與女生、男生有關(guān)”.

女生

男生

總計(jì)

獲獎(jiǎng)

不獲獎(jiǎng)

總計(jì)

附表及公式:

其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)的直線l與拋物線交于A,B兩點(diǎn),以AB為直徑作圓,記為,與拋物線C的準(zhǔn)線始終相切.

1)求拋物線C的方程;

2)過(guò)圓心Mx軸垂線與拋物線相交于點(diǎn)N,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,已知四邊形是菱形,,,二面角的大小為的中點(diǎn).

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)處的切線方程;

2)若函數(shù)在定義域上單調(diào)增,求的取值范圍;

3)若函數(shù)在定義域上不單調(diào),試判定的零點(diǎn)個(gè)數(shù),并給出證明過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,為橢圓上兩點(diǎn),圓.

(1)若軸,且滿足直線與圓相切,求圓的方程;

(2)若圓的半徑為2,點(diǎn),滿足,求直線被圓截得弦長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年新冠肺炎疫情暴發(fā)以來(lái),中國(guó)政府迅速采取最全面、最嚴(yán)格、最徹底的防控舉措,堅(jiān)決遏制疫情蔓延勢(shì)頭,努力把疫情影響降到最低,為全世界抗擊新冠肺炎疫情做岀了貢獻(xiàn).為普及防治新冠肺炎的相關(guān)知識(shí),某高中學(xué)校開(kāi)展了線上新冠肺炎防控知識(shí)競(jìng)答活動(dòng),現(xiàn)從大批參與者中隨機(jī)抽取200名幸運(yùn)者,他們的得分(滿分100分)數(shù)據(jù)統(tǒng)計(jì)結(jié)果如圖:

1)若此次知識(shí)競(jìng)答得分整體服從正態(tài)分布,用樣本來(lái)估計(jì)總體,設(shè),分別為這200名幸運(yùn)者得分的平均值和標(biāo)準(zhǔn)差(同一組數(shù)據(jù)用該區(qū)間中點(diǎn)值代替),求的值(,的值四舍五入取整數(shù)),并計(jì)算;

2)在(1)的條件下,為感謝大家積極參與這次活動(dòng),對(duì)參與此次知識(shí)競(jìng)答的幸運(yùn)者制定如下獎(jiǎng)勵(lì)方案:得分低于的獲得1次抽獎(jiǎng)機(jī)會(huì),得分不低于的獲得2次抽獎(jiǎng)機(jī)會(huì).假定每次抽獎(jiǎng)中,抽到18元紅包的概率為,抽到36元紅包的概率為.已知高三某同學(xué)是這次活動(dòng)中的幸運(yùn)者,記為該同學(xué)在抽獎(jiǎng)中獲得紅包的總金額,求的分布列和數(shù)學(xué)期望,并估算舉辦此次活動(dòng)所需要抽獎(jiǎng)紅包的總金額.

參考數(shù)據(jù):;;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右頂點(diǎn)分別為AB,離心率為,長(zhǎng)軸長(zhǎng)為4,動(dòng)點(diǎn)SC上位于x軸上方,直線與直線,分別交于MN兩點(diǎn).

1)求橢圓C的方程

2)求|MN|的最小值

3)當(dāng)最小時(shí),在橢圓C上是否存在這樣的點(diǎn)T,使△TSB面積為?若存在,請(qǐng)確定點(diǎn)T的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案