精英家教網 > 高中數學 > 題目詳情

【題目】根據以往的成績記錄,甲、乙兩名隊員射擊中靶環(huán)數(環(huán)數為整數)的頻率分布情況如圖所示.假設每名隊員每次射擊相互獨立.

(Ⅰ)求圖中a的值;

(Ⅱ)隊員甲進行2次射擊.用頻率估計概率,求甲恰有1次中靶環(huán)數大于7的概率;

(Ⅲ)在隊員甲、乙中,哪一名隊員的射擊成績更穩(wěn)定?(結論無需證明)

【答案】(Ⅰ)0.06;(Ⅱ);(Ⅲ)甲

【解析】

(I)由頻率分布圖中頻率之和為1,可計算出a;

(II)事件“甲恰有1次中靶環(huán)數大于7”表示第一次中靶環(huán)數大于7,第二次中靶環(huán)數不大于7,和第一次中靶環(huán)數不大于7,第二次中靶環(huán)數大于1,由相互獨立事件的概率公式可計算概率;

(III)估計兩人中靶環(huán)數的均值差不多都是8,甲5個數據分布均值兩側,而乙6個數據偏差較大,甲較穩(wěn)定.

(I)由題意;

(II)記事件A為甲中射擊一次中靶環(huán)數大于7,則,

甲射擊2次,恰有1次中靶數大于7的概率為:

;

(III)甲穩(wěn)定.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某投資公司計劃投資兩種金融產品,根據市場調查與預測,產品的利潤與投資金額的函數關系為產品的利潤與投資金額的函數關系為.(注:利潤與投資金額單位:萬元)

(1)該公司已有100萬元資金,并全部投入,兩種產品中,其中萬元資金投入產品,試把兩種產品利潤總和表示為的函數,并寫出定義域;

(2)試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

【答案】(1);(2)20,28.

【解析】

1)設投入產品萬元,則投入產品萬元,根據題目所給兩個產品利潤的函數關系式,求得兩種產品利潤總和的表達式.2)利用基本不等式求得利潤的最大值,并利用基本不等式等號成立的條件求得資金的分配方法.

(1)其中萬元資金投入產品,則剩余的(萬元)資金投入產品,

利潤總和為:

(2)因為

所以由基本不等式得:,

當且僅當時,即:時獲得最大利潤28萬.

此時投入A產品20萬元,B產品80萬元.

【點睛】

本小題主要考查利用函數求解實際應用問題,考查利用基本不等式求最大值,屬于中檔題.

型】解答
束】
20

【題目】已知曲線.

(1)求曲線在處的切線方程;

(2)若曲線在點處的切線與曲線相切,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的函數滿足,且為偶函數,若內單調遞減,則下面結論正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】實數對滿足不等式組則目標函數當且僅當時取最大值,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高一新生共有320人,其中男生192人,女生128人.為了解高一新生對數學選修課程的看法,采用分層抽樣的方法從高一新生中抽取5人進行訪談.

(Ⅰ)這5人中男生、女生各多少名?

(Ⅱ)從這5人中隨即抽取2人完成訪談問卷,求2人中恰有1名女生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,在區(qū)間上有最大值,有最小值,設

1)求的值;

2)不等式時恒成立,求實數的取值范圍;

3)若方程有三個不同的實數解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB//CD,ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD2EF

Ⅰ)求證:平面ADE⊥平面BDEF;

Ⅱ)若二面角CBFD的大小為60°,求CF與平面ABCD所成角的正弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某心理學研究小組在對學生上課注意力集中情況的調查研究中,發(fā)現其注意力指數p與聽課時間t之間的關系滿足如圖所示的曲線.當t(0,14]時,曲線是二次函數圖象的一部分,當t[14,40]時,曲線是函數)圖象的一部分.根據專家研究,當注意力指數p大于等于80時聽課效果最佳.

(1)試求的函數關系式;

(2)一道數學難題,講解需要22分鐘,問老師能否經過合理安排在學生聽課效果最佳時講完?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(管道構成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長度L表示為的函數,并寫出定義域;

(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.

查看答案和解析>>

同步練習冊答案