【題目】某心理學(xué)研究小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其注意力指數(shù)p與聽(tīng)課時(shí)間t之間的關(guān)系滿足如圖所示的曲線.當(dāng)t∈(0,14]時(shí),曲線是二次函數(shù)圖象的一部分,當(dāng)t∈[14,40]時(shí),曲線是函數(shù)(且)圖象的一部分.根據(jù)專家研究,當(dāng)注意力指數(shù)p大于等于80時(shí)聽(tīng)課效果最佳.
(1)試求的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)難題,講解需要22分鐘,問(wèn)老師能否經(jīng)過(guò)合理安排在學(xué)生聽(tīng)課效果最佳時(shí)講完?請(qǐng)說(shuō)明理由.
【答案】(1);(2)能,見(jiàn)解析.
【解析】
(1)根據(jù)所給的函數(shù)圖像先求出當(dāng)t∈(0,14]時(shí)的二次函數(shù)解析式,再由點(diǎn),代入函數(shù)求出t∈[14,40]時(shí)的解析式,用分段函數(shù)表達(dá)即可.
(2)對(duì)分段函數(shù),分別解不等式,求出的取值范圍,然后取并集,再計(jì)算時(shí)間的長(zhǎng)度,然后對(duì)老師能否經(jīng)過(guò)合理安排在學(xué)生聽(tīng)課效果最佳時(shí)講完做出判斷.
解:(1)當(dāng)t∈(0,14]時(shí),設(shè)p=f(t)=c(t-12)2+82(c<0),
將點(diǎn)(14,81)代入得c=-,
∴當(dāng)t∈(0,14]時(shí),p=f(t)=- (t-12)2+82;
當(dāng)t∈(14,40]時(shí),將點(diǎn)(14,81)代入y=loga(t-5)+83,得a=.
所以p=f(t)=
(2)當(dāng)t∈(0,14]時(shí),- (t-12)2+82≥80,
解得:,
所以;
當(dāng)t∈(14,40]時(shí),log (t-5)+83≥80,
解得5<t≤32,所以t∈(14,32],
綜上時(shí)學(xué)生聽(tīng)課效果最佳.
此時(shí)
所以,教師能夠合理安排時(shí)間講完題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PPD//平面MAC,PA=PD=,AB=4.
(I)求證:M為PB的中點(diǎn);
(II)求二面角B-PD-A的大;
(III)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)以往的成績(jī)記錄,甲、乙兩名隊(duì)員射擊中靶環(huán)數(shù)(環(huán)數(shù)為整數(shù))的頻率分布情況如圖所示.假設(shè)每名隊(duì)員每次射擊相互獨(dú)立.
(Ⅰ)求圖中a的值;
(Ⅱ)隊(duì)員甲進(jìn)行2次射擊.用頻率估計(jì)概率,求甲恰有1次中靶環(huán)數(shù)大于7的概率;
(Ⅲ)在隊(duì)員甲、乙中,哪一名隊(duì)員的射擊成績(jī)更穩(wěn)定?(結(jié)論無(wú)需證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生的寫(xiě)作水平與離好閱讀是否有關(guān),隨機(jī)詢問(wèn)120名高中生是否喜好閱讀,利用2×2列聯(lián)表,由計(jì)算可得K2=4.236
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參照附表,可得正確的結(jié)論是( 。
A.有95%的把握認(rèn)為“寫(xiě)作水平與喜好閱讀有關(guān)”
B.有97.5%的把握認(rèn)為“寫(xiě)作水平與喜好閱讀有關(guān)”
C.有95%的把握認(rèn)為“寫(xiě)作水平與喜好閱讀無(wú)關(guān)”
D.有97.5%的把握認(rèn)為“寫(xiě)作水平與喜好閱讀無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示:
(1)求的解析式;
(2)求的單調(diào)區(qū)間和對(duì)稱中心坐標(biāo);
(3)將的圖象向左平移個(gè)單位,再將橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,最后將圖象向上平移1個(gè)單位,得到函數(shù)的圖象,求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若實(shí)數(shù)滿足,則稱比接近
(1)若4比接近0,求的取值范圍;
(2)對(duì)于任意的兩個(gè)不等正數(shù),求證:比接近;
(3)若對(duì)于任意的非零實(shí)數(shù),實(shí)數(shù)比接近,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《福建省高考改革試點(diǎn)方案》規(guī)定:從2018年秋季高中入學(xué)的新生開(kāi)始,不分文理科;2021年開(kāi)始,高考總成績(jī)由語(yǔ)數(shù)外3門(mén)統(tǒng)考科目和物理、化學(xué)等六門(mén)選考科目構(gòu)成,將每門(mén)選考科目的考生原始成績(jī)從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí),參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、18%、22%、22%、18%、7%、3%,選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將A至E等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71.80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī),某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六門(mén)選考科目進(jìn)行測(cè)試,其中化學(xué)考試原始成績(jī) 基本服從正態(tài)分布.
(1)求化學(xué)原始成績(jī)?cè)趨^(qū)間(57,96)的人數(shù);
(2)以各等級(jí)人數(shù)所占比例作為各分?jǐn)?shù)區(qū)間發(fā)生的概率,按高考改革方案,若從全省考生中隨機(jī)抽取3人,記表示這3人中等級(jí)成績(jī)?cè)趨^(qū)間[71,90]的人數(shù),求事件的概率
(附:若隨機(jī)變量,,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com