在平面直角坐標(biāo)系xOy中,若圓x2+(y-1)2=4上存在A,B兩點(diǎn)關(guān)于點(diǎn)P(1,2)成中心對稱,則直線AB的方程為
 
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:求出圓心坐標(biāo),利用圓x2+(y-1)2=4上存在A,B兩點(diǎn)關(guān)于點(diǎn)P(1,2)成中心對稱,求出直線AB的斜率,進(jìn)而可求直線AB的方程.
解答: 解:由題意,圓x2+(y-1)2=4的圓心坐標(biāo)為C(0,1),
∵圓x2+(y-1)2=4上存在A,B兩點(diǎn)關(guān)于點(diǎn)P(1,2)成中心對稱,
∴CP⊥AB,P為AB的中點(diǎn),
kCP=
2-1
1-0
=1,∴kAB=-1,
∴直線AB的方程為y-2=-(x-1),即x+y-3=0.
故答案為:x+y-3=0.
點(diǎn)評:本題考查直線與圓的位置關(guān)系,考查圓的對稱性,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

同時擲兩枚質(zhì)地均勻的骰子,則:
(I)向上的點(diǎn)數(shù)相同的概率為
 
;
(Ⅱ)向上的點(diǎn)數(shù)之和小于5的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是兩條不同的直線,α,β,γ是三個不同的平面,則下列命題中正確的是(  )
A、m∥α,n∥α,則m∥n
B、m∥n,m∥α,則n∥α
C、m⊥α,m⊥β,則α∥β
D、α⊥γ,β⊥γ,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公安部交管局修改后的酒后違法駕駛機(jī)動車的行為分成兩個檔次:“酒后駕車”和“醉酒駕車”,其判斷標(biāo)準(zhǔn)是駕駛?cè)藛T每100毫升血液中的酒精含量X毫克,當(dāng)20≤X<80時,認(rèn)定為酒后駕車;當(dāng)X≥80時,認(rèn)定為醉酒駕車,張掖市公安局交通管理部門在對我市路段的一次隨機(jī)攔查行動中,依法檢測了200輛機(jī)動車駕駛員的每100毫升血液中的酒精含量,酒精含量X(單位:毫克)的統(tǒng)計(jì)結(jié)果如下表:.
X [0,20) [20,40) [40,60) [60,80) [80,100) [100,+∞)
人數(shù) t 1 2 1 1 1
依據(jù)上述材料回答下列問題:
(1)求t的值:
(2)從酒后違法駕車的司機(jī)中隨機(jī)抽取2人,求這2人中含有醉酒駕車司機(jī)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓x2+y2=R2(R>0)和曲線
|x|
3
+
|y|
4
=1
恰有六個公共點(diǎn),則R的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)滿足條件x2+y2≤1的點(diǎn)(x,y)構(gòu)成的平面區(qū)域的面積為S1,滿足條件[x]2+[y]2≤1的點(diǎn)(x,y)構(gòu)成的平面區(qū)域的面積為S2(其中[x],[y]分別表示不大于x,y的最大整數(shù),例如[-0.3]=-1,[1.2]=1),給出下列結(jié)論:
①點(diǎn)(S1,S2)在直線y=x左上方的區(qū)域內(nèi);
②點(diǎn)(S1,S2)在直線x+y=7左下方的區(qū)域內(nèi);
③S1<S2;
④S1>S2
其中所有正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人同時從圖書館走向教室,甲一半路程步行,一半路程跑步;乙一半時間步行,一半時間跑步,若兩人步行、跑步的速度一樣,則先到教室的是( 。
A、甲B、乙
C、甲、乙同時到達(dá)D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=loga(x-2)(a>0,a≠1).
(1)求函數(shù)定義域和函數(shù)圖象所過的定點(diǎn);
(2)若已知x∈[4,6]時,函數(shù)最大值為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)r是常數(shù),如果M(x0,y0)是圓x2+y2=r2外的一點(diǎn),那么直線x0x+y0y=r2與圓x2+y2=r2的位置關(guān)系是( 。
A、相交B、相切
C、相離D、都有可能

查看答案和解析>>

同步練習(xí)冊答案