【題目】設函數(shù),其中為自然對數(shù)的底數(shù).
(1)當時,判斷函數(shù)的單調性;
(2)若直線是函數(shù)的切線,求實數(shù)的值;
(3)當時,證明:.
【答案】(1)在區(qū)間上單調遞增.(2)(3)見證明
【解析】
(1)先由解析式,得到函數(shù)定義域,對函數(shù)求導,根據(jù),即可得出結果;
(2)先設切點為,根據(jù)切線方程為,得到,再對函數(shù)求導,得到,設,用導數(shù)方法研究其單調性,得到最值,即可求出結果;
(3)先對函數(shù)求導,設,用導數(shù)方法研究單調性,進而可判斷出單調性,即可得出結論成立.
解:(1)函數(shù)的定義域為.
因為,所以,
所以在區(qū)間上單調遞增.
(2)設切點為,則,
因為,所以,得,
所以.
設,則,
所以當時,,單調遞增,
當時,,單調遞減,
所以.
因為方程僅有一解,
所以.
(3)因為,
設,則,所以在單調遞增.
因為,,
所以存在,使得.
當時,,,單調遞減,
當時,,,單調遞增,
所以.
因為,所以,,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率:先由計算器給出0到9之間取整數(shù)值的隨機數(shù),指定0,1表示沒有擊中目標,2,3,4,5,6,7, 8,9表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結果,經(jīng)隨機模擬產生了 20組隨機數(shù):
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根據(jù)以上數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖為一塊邊長為2km的等邊三角形地塊ABC,為響應國家號召,現(xiàn)對這塊地進行綠化改造,計劃從BC的中點D出發(fā)引出兩條成60°角的線段DE和DF,與AB和AC圍成四邊形區(qū)域AEDF,在該區(qū)域內種上草坪,其余區(qū)域修建成停車場,設∠BDE=.
(1)當=60°時,求綠化面積;
(2)試求地塊的綠化面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在梯形中(圖1),,,,過、分別作的垂線,垂足分別為、,且,將梯形沿、同側折起,使得,且,得空間幾何體 (圖2).直線與平面所成角的正切值是.
(1)求證:平面;
(2)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
已知曲線的極坐標方程為.以極點為原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標方程和直線的普通方程;
(2)求直線被曲線所截得的弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校學生社團組織活動豐富,學生會為了解同學對社團活動的滿意程度,隨機選取了100位同學進行問卷調查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的中位數(shù);
(3)現(xiàn)從被調查的問卷滿意度評分值在[60,80)的學生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司研發(fā)了兩種具有自主知識產權的操作系統(tǒng),分別命名為“天下”、“東方”.這兩套操作系統(tǒng)均適用于手機、電腦、車聯(lián)網(wǎng)、物聯(lián)網(wǎng)等,且較國際同類操作系統(tǒng)更加流暢.
(1)為了解喜歡“天下”系統(tǒng)是否與性別有關,隨機調查了名男用戶和名女用戶,每位用戶對“天下”系統(tǒng)給出喜歡或不喜歡的評價,得到下面列聯(lián)表:
請問:能否有的把握認為男、女用戶對“天下”系統(tǒng)的喜歡有差異?
附:.
(2)該公司選定萬名用戶對“天下”和“東方”操作系統(tǒng)(以下簡稱“天下”、“東方”)進行測試,每個用戶只能從“天下”或“東方”中選擇一個使用,每經(jīng)過一個月后就給用戶一次重新選擇“天下”或“東方”的機會.這個月選擇“天下”的用戶在下個月選擇“天下”的概率均為,選擇“東方”的概率均為,;這個月選擇“東方”的用戶在下個月選擇“天下”的概率均為,選擇“東方”的概率均為,.記表示第個月用戶選擇“天下”的概率,已知,,,,.
(。┣的值;
(ⅱ)證明:數(shù)列()為等比數(shù)列;
(ⅲ)預測選擇“天下”操作系統(tǒng)的用戶數(shù)量不超過多少萬人.(精確到1萬)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某商品每件的生產成本(元)與銷售價格(元)具有線性相關關系,對應數(shù)據(jù)如表所示:
(元) | 5 | 6 | 7 | 8 |
(元) | 15 | 17 | 21 | 27 |
(1)求出關于的線性回歸方程;
(2)若該商品的月銷售量(千件)與生產成本(元)的關系為,,根據(jù)(1)中求出的線性回歸方程,預測當為何值時,該商品的月銷售額最大.
附:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com