精英家教網 > 高中數學 > 題目詳情

已知點,若動點滿足
(1)求動點的軌跡曲線的方程;
(2)在曲線上求一點,使點到直線:的距離最。

(1);(2).

解析試題分析:本題考查計算能力和參數方程在求圓錐曲線最值中的應用.(1)由向量的坐標運算,模公式可列出式子,化簡求解;(2)將橢圓方程化為參數方程,由點到直線的距離公式,轉化為求三角函數的最值.
試題解析:(1)設點坐標為,則,.
因為,所以,化簡得.
所以動點的軌跡為.
(2)點上,設點坐標為.
到直線的距離為

有最小值
此時點坐標為.
考點:1、平面向量的坐標運算;2、橢圓方程及其性質;3、點到直線的距離公式;4、橢圓的參數方程;5、三角恒等變換與三角函數運算.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知橢圓,
(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;
(2)在(1)的條件下,設過定點的直線與橢圓交于不同的兩點,且為銳角(為坐標原點),求直線的斜率的取值范圍;
(3)過原點任意作兩條互相垂直的直線與橢圓相交于四點,設原點到四邊形的一邊距離為,試求滿足的條件.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓)右頂點到右焦點的距離為,短軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點的直線與橢圓分別交于兩點,若線段的長為,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的中心在坐標原點,右準線為,離心率為.若直線與橢圓交于不同的兩點、,以線段為直徑作圓.
(1)求橢圓的標準方程;
(2)若圓軸相切,求圓被直線截得的線段長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

知橢圓的左右焦點為F1,F2,離心率為,以線段F1 F2為直徑的圓的面積為,   (1)求橢圓的方程;(2) 設直線l過橢圓的右焦點F2(l不垂直坐標軸),且與橢圓交于A、B兩點,線段AB的垂直平分線交x軸于點M(m,0),試求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,已知曲線上任意一點到點的距離與到直線的距離相等.
(Ⅰ)求曲線的方程;
(Ⅱ)設軸上的兩點,過點分別作軸的垂線,與曲線分別交于點,直線與x軸交于點,這樣就稱確定了.同樣,可由確定了.現已知,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知橢圓的上、下頂點分別為,點在橢圓上,且異于點,直線與直線分別交于點,

(Ⅰ)設直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長的最小值;
(Ⅲ)當點運動時,以為直徑的圓是否經過某定點?請證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,曲線上任意一點分別與點連線的斜率的乘積為
(Ⅰ)求曲線的方程;
(Ⅱ)設直線軸、軸分別交于、兩點,若曲線與直線沒有公共點,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線與雙曲線有公共焦點,點是曲線在第一象限的交點,且
(1)求雙曲線的方程;
(2)以雙曲線的另一焦點為圓心的圓與直線相切,圓.過點作互相垂直且分別與圓、圓相交的直線,設被圓截得的弦長為,被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

同步練習冊答案