在平面直角坐標系中,記由點A(0,1),B(4,2),C(2,6)圍成的三角形區(qū)域(含邊界)為D,P(x,y)為區(qū)域D上的點,則
(x-2)2+(y-2)2
最大值與最小值的和為( 。
A、
4
5
5
B、
4
5
5
+
2
17
17
C、4
D、
2
17
17
+4
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:判斷
(x-2)2+(y-2)2
的幾何意義,然后利用可行域求解最大值與最小值的和.
解答: 解:
(x-2)2+(y-2)2
表示區(qū)域中的點P(x,y)與點E(2,2)的距離.
①Q(mào)點(2,2)是區(qū)域中的點,
(x-2)2+(y-2)2
的最小值為0;
②由區(qū)域D可知,
(x-2)2+(y-2)2
的最大值為|CE|=4,
故選:C.
點評:本題考查線性規(guī)劃的解答應用,注意表達式的幾何意義是解題的關鍵,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合M={x|x2-x≤0},函數(shù)f(x)=
1
|x-1|
的定義域為D,則M∩D=(  )
A、[0,1)B、(0,1)
C、(0,1]D、{1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若θ∈[
π
4
,
π
2
],sin2θ=
3
7
8
,則cosθ=( 。
A、
3
4
B、
7
8
C、
7
4
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A,B兩個學生分別從2名數(shù)學教師和2名英語教師共4人中各選擇一位教師給自己補缺補差,若A,B不選同一位教師,則學生A選擇數(shù)學教師,學生B選擇英語教師的概率為( 。
A、
1
3
B、
5
12
C、
1
2
D、
7
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}中a4+a8=-2,則a42+2a62+a6a10的值為(  )
A、4B、5C、8D、-9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若角A、B、C的對邊分別是a、b、c,則“a2+c2=b2+ac”,是“A、B、C依次成等差數(shù)列”的( 。
A、既不充分也不必要條件
B、充分不必要條件
C、必要不充分條件
D、充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足條件
2x-y+2≥0
8x-y-4≤0
x≥0,y≥0
,若目標函數(shù)z=
x
a
+
y
b
(a>0,b>0)的最大值為9,則4a+b的最小值為( 。
A、
16
9
B、16
C、4
D、
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B,C是⊙O上的三點,BE切⊙O于點B,D是CE與⊙O的交點.若∠BAC=60°,BC=2BE,求證:CD=2ED.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2-2x.
(1)若曲線y=f(x)-g(x)在x=1與x=
1
2
處的切線相互平行,求a的值及切線斜率;
(2)若函數(shù)y=f(x)-g(x)在區(qū)間(
1
3
,1)上單調(diào)遞減,求a的取值范圍;
(3)設函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于P,Q兩點,過線段PQ的中點作x軸的垂線分別交C1、C2于點M、N,證明:C1在點M處的切線與C2在點N處的切線不可能平行.

查看答案和解析>>

同步練習冊答案