【題目】一批產(chǎn)品中,有一級(jí)品100個(gè),二級(jí)品60個(gè),三級(jí)品40個(gè),分別用系統(tǒng)抽樣和分層抽樣的方法,從這批產(chǎn)品中抽取一個(gè)容量為20的樣本,寫出抽樣過(guò)程,并說(shuō)明采用哪種抽樣方法更能反映總體水平.
【答案】見(jiàn)解析
【解析】試題分析:系統(tǒng)抽樣方法, 將200件產(chǎn)品用隨機(jī)方式編號(hào),并分成20個(gè)組,每組10個(gè)產(chǎn)品,用抽簽的方法從第一組中抽取一個(gè)產(chǎn)品,再依次加抽樣間距,這樣就得到容量為20的一個(gè)樣本.
試題解析:
系統(tǒng)抽樣方法:
將200件產(chǎn)品用隨機(jī)方式編號(hào),并分成20個(gè)組,每組10個(gè)產(chǎn)品,用抽簽的方法從第一組中抽取一個(gè)產(chǎn)品,再依次加抽樣間距,這樣就得到容量為20的一個(gè)樣本.
分層抽樣方法:
∵一、二、三級(jí)品的個(gè)數(shù)比為5∶3∶2,
∴需要從一級(jí)品中抽取×20=10(個(gè)),二級(jí)品中抽取×20=6(個(gè)),三級(jí)品中抽取×20=4(個(gè)).
將一級(jí)品的100個(gè)產(chǎn)品按00,01,…,99編號(hào),將二級(jí)品的60個(gè)產(chǎn)品按00,01,…,59編號(hào);將三級(jí)品的40個(gè)產(chǎn)品按00,01,…,39編號(hào),采用隨機(jī)數(shù)表法,分別從中抽取10個(gè)、6個(gè)、4個(gè),這樣就得到一個(gè)容量為20的樣本.此題中采用分層抽樣更好,樣本更能反映總體的各類水平.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,則函數(shù) 滿足( )
A.最小正周期為
B.圖象關(guān)于點(diǎn) 對(duì)稱
C.在區(qū)間 上為減函數(shù)
D.圖象關(guān)于直線 對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列的前項(xiàng)和為,在同一個(gè)坐標(biāo)系中,及的部分圖象如圖所示,則( ).
A. 當(dāng)時(shí),取得最大值 B. 當(dāng)時(shí),取得最大值
C. 當(dāng)時(shí),取得最小值 D. 當(dāng)時(shí),取得最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)隨機(jī)變量X的概率分布列如表,則P(|X﹣3|=1)( )
X | 1 | 2 | 3 | 4 |
P |
| m |
|
|
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】.某校從高二年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),[90,100]后得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)a的值;
(2)若該校高二年級(jí)共有學(xué)生640人,試估計(jì)該校高二年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的學(xué)生人數(shù);
(3)若從數(shù)學(xué)成績(jī)?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,b>0,且a2+b2= ,若a+b≤m恒成立,
(Ⅰ)求m的最小值;
(Ⅱ)若2|x﹣1|+|x|≥a+b對(duì)任意的a,b恒成立,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二手車經(jīng)銷商小王對(duì)其所經(jīng)營(yíng)的某一型號(hào)二手汽車的使用年數(shù)x(0<x≤10)與銷售價(jià)格y(單位:萬(wàn)元/輛)進(jìn)行整理,得到如表的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價(jià) | 16 | 13 | 9.5 | 7 | 4.5 |
(1)試求y關(guān)于x的回歸直線方程;(參考公式: = , =y﹣ )
(2)已知每輛該型號(hào)汽車的收購(gòu)價(jià)格為w=0.01x3﹣0.09x2﹣1.45x+17.2萬(wàn)元,根據(jù)(1)中所求的回歸方程,預(yù)測(cè)x為何值時(shí),小王銷售一輛該型號(hào)汽車所獲得的利潤(rùn)L(x)最大?(利潤(rùn)=售價(jià)﹣收購(gòu)價(jià))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:f(x)= 在區(qū)間(1,+∞)上是減函數(shù);命題q:2x﹣1+2m>0對(duì)任意x∈R恒成立.若(¬p)∧q為真,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲船以每小時(shí)30海里的速度向正北方向航行,乙船按固定方向勻速直線航行.當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105°方向的B1處,此時(shí)兩船相距20海里.當(dāng)甲船航行20分鐘到達(dá)A2處時(shí),乙船航行到甲船的北偏西120°方向的B2處,此時(shí)兩船相距10海里,問(wèn)乙船每小時(shí)航行多少海里?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com