【題目】已知函數(shù).其中.

1)討論函數(shù)的單調(diào)性;

2)函數(shù)處存在極值-1,且時,恒成立,求實數(shù)的最大整數(shù).

【答案】(1)當時,上單調(diào)遞增;時,上單調(diào)遞減,在上單調(diào)遞增(2)的最大整數(shù)為0.

【解析】

1)求導,分,討論的正負值,即函數(shù)的單調(diào)性;

2)先通過函數(shù)處存在極值-1,可求出,將恒成立,轉(zhuǎn)化為,令,利用導數(shù)求的最小值.

解:(1

時,,上單調(diào)遞增;

時,,

時,,上單調(diào)遞減;

時,上單調(diào)遞增;

綜上,當時,上單調(diào)遞增;

時,上單調(diào)遞減,在上單調(diào)遞增.

2)函數(shù)處存在極值-1,

由(1)知,且,,

所以,,

因為,,

所以時,單調(diào)遞減;時,單調(diào)遞增,

處存在極值滿足題意;

由題意恒成立,即,對恒成立,

即:,設(shè),只需,

因為

又令,,

所以上單調(diào)遞增,

因為,.

知存在使得,

且在上,,,單調(diào)遞減,

上,,單調(diào)遞增,

所以,,即,

,

,所以的最大整數(shù)為0.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為常數(shù), ,函數(shù) (其中是自然對數(shù)的底數(shù)).

(1)過坐標原點作曲線的切線,設(shè)切點為,求證:

(2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,等腰梯形中,,,ECD中點,將沿AE折到的位置.

(1)證明:;

(2)當折疊過程中所得四棱錐體積取最大值時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)在曲線上任取一點,連接,在射線上取,使,點軌跡的極坐標方程;

2)在曲線上任取一點,在曲線上任取一點,的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖中、、、、六個區(qū)域進行染色,每個區(qū)域只染一種顏色,每個區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有種顏色可供選擇,則共有_________種不同的染色方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】月,中國良渚古城遺址獲準列入世界遺產(chǎn)名錄,標志著中華五千年文明史得到國際社會認可.良渚古城遺址是人類早期城市文明的范例,實證了中華五千年文明史.考古科學家在測定遺址年齡的過程中利用了放射性物質(zhì)因衰變而減少這一規(guī)律.已知樣本中碳的質(zhì)量隨時間(單位:年)的衰變規(guī)律滿足表示碳原有的質(zhì)量),則經(jīng)過年后,碳的質(zhì)量變?yōu)樵瓉淼?/span>________;經(jīng)過測定,良渚古城遺址文物樣本中碳的質(zhì)量是原來的,據(jù)此推測良渚古城存在的時期距今約在________年到年之間.(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個問題,決定對機動車停車施行收費制度,收費標準如下:4小時內(nèi)(含4小時)每輛每次收費5元;超過4小時不超過6小時,每增加一小時收費增加3元;超過6小時不超過8小時,每增加一小時收費增加4元,超過8小時至24小時內(nèi)(含24小時)收費30元;超過24小時,按前述標準重新計費.上述標準不足一小時的按一小時計費.為了調(diào)查該停車場一天的收費情況,現(xiàn)統(tǒng)計1000輛車的停留時間(假設(shè)每輛車一天內(nèi)在該停車場僅停車一次),得到下面的頻數(shù)分布表:

(小時)

頻數(shù)(車次)

100

100

200

200

350

50

以車輛在停車場停留時間位于各區(qū)間的頻率代替車輛在停車場停留時間位于各區(qū)間的概率.

1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進行進一步深入調(diào)研,記錄并統(tǒng)計了停車時長與司機性別的列聯(lián)表:

合計

不超過6小時

30

6小時以上

20

合計

100

完成上述列聯(lián)表,并判斷能否有90%的把握認為“停車是否超過6小時”與性別有關(guān)?

2)(i表示某輛車一天之內(nèi)(含一天)在該停車場停車一次所交費用,求的概率分布列及期望;

ii)現(xiàn)隨機抽取該停車場內(nèi)停放的3輛車,表示3輛車中停車費用大于的車輛數(shù),求的概率.

參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)寫出曲線的極坐標方程,并求出曲線公共弦所在直線的極坐標方程;

2)若射線與曲線交于兩點,與曲線交于點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12)

已知函數(shù)(其中a是實數(shù)).

(1)求的單調(diào)區(qū)間;

(2)若設(shè),且有兩個極值點 ,求取值范圍.(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

同步練習冊答案