【題目】已知函數(shù)f(x)是定義在(﹣1,1)上的奇函數(shù),且f(),
(1)確定函數(shù)的解析式;
(2)用定義法判斷函數(shù)的單調(diào)性;
(3)解不等式;f(t﹣1)+f(t)<0.
【答案】(1);(2)減函數(shù),證明見解析;(3)
【解析】
由函數(shù)為定義在上的奇函數(shù)可知,,再結(jié)合,可得關(guān)于的方程,即可求出函數(shù)的解析式;
設(shè),將與作差,因式分解,經(jīng)過討論可得,從而證明函數(shù)為上的減函數(shù);
根據(jù)函數(shù)為上的奇函數(shù),且為減函數(shù),原不等式可化為,再根據(jù)定義域可得,,即可求得原不等式的解集.
由題意知,,因為,
所以有 ,解得,,
所以函數(shù)的解析式為,
證明:任取,且,
則,
因為,所以
所以,即,
所以函數(shù)為上的減函數(shù);
函數(shù)為上的奇函數(shù),所以,
所以原不等式可化為,
又因為函數(shù)為上的減函數(shù),
所以有,解得,
所以原不等式的解集為.
科目:高中數(shù)學 來源: 題型:
【題目】某美術(shù)學院2018年在山西招生,報名人數(shù)很多.工作人員在某個市區(qū)抽取了該區(qū)2018年美術(shù)招生考試成績中200名學生的色彩和素描的初試成績,按成績分組,得到的頻率分布表如下圖所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 24 | 0.12 | |
第2組 | ① | 0.18 | |
第3組 | 64 | 0.32 | |
第4組 | 60 | ② | |
第5組 | 16 | 0.08 | |
合計 | 200 | 1.00 |
(1)請先求出頻率分布表中①、②位置相應數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖,并由頻率分布直方圖估算中位數(shù);
(2)為了能更清楚地了解該市學生的情況,該美院決定在復試以前先進行抽樣調(diào)研.但受場地和教授人數(shù)的客觀限制,決定從第3組選出3人,第4組選出2人,第5組選出1人,然后從這6人中再選出2人進行調(diào)研,求這2人均來自第三組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲市有萬名高三學生參加了天一大聯(lián)考,根據(jù)學生數(shù)學成績(滿分:分)的大數(shù)據(jù)分析可知,本次數(shù)學成績服從正態(tài)分布,即,且,.
(1)求的值.
(2)現(xiàn)從甲市參加此次聯(lián)考的高三學生中,隨機抽取名學生進行問卷調(diào)查,其中數(shù)學成績高于分的人數(shù)為,求.
(3)與甲市相鄰的乙市也有萬名高三學生參加了此次聯(lián)考,且其數(shù)學成績服從正態(tài)分布.某高校規(guī)定此次聯(lián)考數(shù)學成績高于分的學生可參加自主招生考試,則甲和乙哪個城市能夠參加自主招生考試的學生更多?
附:若隨機變量,則,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣4x2+5x﹣4.
(1)求曲線f(x)在點(2,f(2))處的切線方程:
(2)若g(x)=f(x)+k,求g(x)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若存在正數(shù)a,使得時,,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(,為常數(shù),且)滿足條件:,且方程有兩相等實根.
(1)求的解析式;
(2)設(shè)命題 “函數(shù)在上有零點”,命題 “函數(shù)在上單調(diào)遞增”;若命題“”為真命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓O1與圓O:x2+y2=r(r>0)交于點P(﹣1,y0).且關(guān)于直線x+y=1對稱.
(1)求圓O及圓O1的方程:
(2)在第一象限內(nèi).圓O上是否存在點A,過點A作直線l與拋物線y2=4x交于點B,與x軸交于點D,且以點D為圓心的圓過點O,A,B?若存在.求出點A的坐標;若不存在.說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com