已知橢圓的兩個焦點F1(-,0),F2(,0),過F1且與坐標軸不平行的直線l1與橢圓相交于M,N兩點,△MNF2的周長等于8. 若過點(1,0)的直線l與橢圓交于不同兩點P、Q,x軸上存在定點E(m,0),使·恒為定值,則E的坐標為(  ▲  )
A.B.C.D.
C
因為直線經(jīng)過點且與橢圓相交于點,而的周長為8
所以,解得,故橢圓方程為
當直線斜率不存在時,直線方程為,此時坐標為,從而有

當直線斜率存在時,設直線方程為,聯(lián)立

坐標為,則

因為恒為定值,所以,解得
此時,符合條件
所以點坐標為,故選C
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
設橢圓C的左、右焦點分別為F1、F2,A是橢圓C上的一點,,坐標原點O到直線AF1的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設Q是橢圓C上的一點,過點Q的直線l x軸于點,交 y軸于點M,若,求直線l 的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是橢圓上的一點,是焦點,且,則的面積為          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左右焦點為,過點且斜率為正數(shù)的直線交橢圓兩點,且成等差數(shù)列。
(1)求橢圓的離心率;
(2)若直線與橢圓交于兩點,求使四邊形的面積最大時的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知P是橢圓上的點,F(xiàn)1、F2分別是橢圓的左、右焦點,若,則的面積為( )
A.3B.2C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點分別為橢圓的左、右焦點,點為橢圓上任意一點,到焦點的距離的最大值為,且的最大面積為.
(I)求橢圓的方程。
(II)點的坐標為,過點且斜率為的直線與橢圓相交于兩點。對于任意的是否為定值?若是求出這個定值;若不是說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的中心在坐標原點,焦點在軸上,橢圓上的點到
兩個焦點的距離之和為,離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左、右焦點分別為、,過點的直線與該橢圓交于點、,
為鄰邊作平行四邊形,求該平行四邊形對角線的長度
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在原點的橢圓的一個焦點為為橢圓上一點,的面積為
(1)求橢圓的方程;
(2)是否存在平行于的直線,使得直線與橢圓相交于兩點,且以線段為有經(jīng)的圓恰好經(jīng)過原點?若存在,求出的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案