是橢圓上的一點,是焦點,且,則的面積為          
依題意可得,。根據(jù)橢圓的幾何性質(zhì)可得,。因為,所以,即,故有,解得。所以
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

離心率,一條準線為的橢圓的標準方程是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,橢圓C:的一個焦點為F(1,0),且過點(2,0)
(1)求橢圓C的方程;
(2)已知A、B為橢圓上的點,且直線AB垂直于軸,又直線=4與軸交于點N,直線AF與BN交
于點M.
(ⅰ)求證:點M恒在橢圓C上;
(ⅱ)求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點,焦點在軸上,離心率為,橢圓的短軸端點和焦點所組成的四邊形周長等于8。
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓相交于兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的兩個焦點F1(-,0),F2(,0),過F1且與坐標軸不平行的直線l1與橢圓相交于M,N兩點,△MNF2的周長等于8. 若過點(1,0)的直線l與橢圓交于不同兩點P、Qx軸上存在定點E(m,0),使·恒為定值,則E的坐標為(  ▲  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題12分)已知橢圓的中心在坐標原點,右焦點F的坐標為(3,0),直線l交橢圓于A、B兩點,線段AB的中點為M(1,),
(1)求橢圓的方程;
(2)動點N滿足 ,求動點N的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設F1,F(xiàn)2為橢圓的兩個焦點,若橢圓上存在點P滿足,則橢圓的離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

的一個頂點P(7,12)在雙曲線上,另外兩頂點F1、F2為該雙曲線的左、右焦點,則的內(nèi)心坐標為____

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是兩個正數(shù)的等比中項,則圓錐曲線的離心率為 (     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案