已知橢圓
的左右焦點(diǎn)為
,過點(diǎn)
且斜率為正數(shù)的直線
交橢圓
于
兩點(diǎn),且
成等差數(shù)列。
(1)求橢圓
的離心率;
(2)若直線
與橢圓
交于
兩點(diǎn),求使四邊形
的面積最大時的
值。
解:(1)根據(jù)橢圓定義及已知條件,有
由上可解得
所以點(diǎn)
為短軸端點(diǎn),
的離心率
。
(2)由(1)可知
,不妨設(shè)
,則
的坐標(biāo)滿足
,由此得
設(shè)
兩點(diǎn)到直線
的距離分別為
,因為
兩點(diǎn)在直線
的異側(cè),則
設(shè)
,則
,
當(dāng)
即
時,
最大,進(jìn)而
有最大值。(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
:
的離心率為
,且過點(diǎn)
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)垂直于坐標(biāo)軸的直線
與橢圓
相交于
、
兩點(diǎn),若以
為直徑的圓
經(jīng)過坐標(biāo)原點(diǎn).證明:圓
的半徑為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)已知橢圓
的長軸長為
,離
心率
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)B(2,0)的直線
(斜率不等于零)與橢圓C交于點(diǎn)E,F(xiàn),且
,
求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分16分)已知橢圓
中心為
,右頂點(diǎn)為
,過定點(diǎn)
作
直線
交橢圓于
、
兩點(diǎn).
(1)若直線
與
軸垂直,求三角形
面積的最大值;
(2)若
,直線
的斜率為
,求證:
;
(3)在
軸上,是否存在一點(diǎn)
,使直線
和
的斜率的乘積為非零常數(shù)?若存在,求出點(diǎn)
的坐標(biāo)和這個常數(shù);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓的兩個焦點(diǎn)
F1(-,0),
F2(,0),過
F1且與坐標(biāo)軸不平行的直線
l1與橢圓相交于
M,
N兩點(diǎn),△
MNF2的周長等于8. 若過點(diǎn)(1,0)的直線
l與橢圓交于不同兩點(diǎn)
P、
Q,
x軸上存在定點(diǎn)
E(
m,0),使·恒為定值,則
E的坐標(biāo)為( ▲ )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
的一個焦點(diǎn)為(0,2)則
的值為:( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓的標(biāo)準(zhǔn)方程為
,若橢圓的焦距為
,則
的取值集合為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(本小題滿分14分)已知橢圓
上的點(diǎn)
到兩個焦點(diǎn)的距離之和為
。
(Ⅰ)求橢圓
的方程;
(Ⅱ)若直線
與橢圓
交于兩點(diǎn)
,且
(
為坐標(biāo)原點(diǎn)),求
的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
是兩個正數(shù)
的等比中項,則圓錐曲線
的離心率為 ( )
查看答案和解析>>