已知點M(a,b)在由不等式
x≥0
y≥0
x+y≤2
確定的平面區(qū)域內(nèi),則點N(a-b,a+b)所在的平面區(qū)域面積是( 。
A、2B、3C、4D、5
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:將坐標(biāo)N,進行轉(zhuǎn)化,作出不等式組對應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:∵點M(a,b)在由不等式
x≥0
y≥0
x+y≤2
確定的平面區(qū)域內(nèi),
a≥0
b≥0
a+b≤2

設(shè)x=a-b,y=a+b,
a=
x+y
2
b=
y-x
2

x+y
2
≥0
y-x
2
≥0
y≤2
,則
x+y≥0
y-x≥0
y≤2

作出不等式組對應(yīng)的平面區(qū)域如圖:
則對應(yīng)區(qū)域為等腰直角三角形AOB,
y-x=0
y=2
,解得
x=2
y=2
,即A(2,2),同理B(-2,2),
則△AOB的面積S=
1
2
×4×2=4
,
故選:C.
點評:本題主要考查不等式組對應(yīng)平面區(qū)域的面積的計算,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若0<x<
π
4
,則函數(shù)y=
tan3x
tan2x
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正四面體ABCD中,E、F、G分別是BC、CD、DB的中點,下面四個結(jié)論中不正確的是( 。
A、BC∥平面AGF
B、EG⊥平面ABF
C、平面AEF⊥平面BCD
D、平面ABF⊥平面BCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,錯誤的是(  )
A、平行于同一平面的兩個不同平面平行
B、一條直線與兩個平行平面中的一個相交,則必與另一個平面相交
C、若直線l與平面α相交但不垂直,則經(jīng)過該直線l有且只有一個平面β與α垂直
D、若直線l不平行平面α,則在平面α內(nèi)不存在與l平行的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義區(qū)間[a,b]的長度為b-a.若[
π
4
,
π
2
]是函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<π)一個長度最大的單調(diào)遞減區(qū)間,則( 。
A、ω=8,φ=
π
2
B、ω=8,φ=-
π
2
C、ω=4,φ=
π
2
D、ω=4,φ=-
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若θ∈[
π
4
,
π
2
],sin2θ=
3
7
8
,則cosθ=( 。
A、
3
4
B、
7
8
C、
7
4
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

滿足條件x2+y2≤1的點(x,y)構(gòu)成的平面區(qū)域面積為S1,滿足條件[x]2+[y]2≤1的點(x,y)構(gòu)成的平面區(qū)域的面積為S2,其中[x]、[y]分別表示不大于x,y的最大整數(shù),例如:[-0.4]=-1,[1.6]=1,則S1+S2=( 。
A、π+3B、π+4
C、π+5D、π+6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中a4+a8=-2,則a42+2a62+a6a10的值為( 。
A、4B、5C、8D、-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0)的焦點為F,準線為l,點A在拋物線C上,設(shè)以F為圓心,F(xiàn)A為半徑的圓F交準線l于M,N兩點.
(1)若∠MFN=90°,且△AMN的面積為4
2
,求p的值;
(2)若A,F(xiàn),M三點共線于直線m,設(shè)直線m與拋物線C的另一個交點為B,記A和B兩點間的距離為f(p),求f(p)關(guān)于p的表達式.

查看答案和解析>>

同步練習(xí)冊答案