【題目】某單位有4位同事各有一輛私家車,車牌尾數(shù)分別是0,1,2,5,為遵守所在城市元月15日至184天的限行規(guī)定(奇數(shù)日車牌尾數(shù)為奇數(shù)的車通行,偶數(shù)日車牌尾數(shù)為偶數(shù)的車通行),四人商議拼車出行,每天任選一輛符合規(guī)定的車,但甲的車(車牌尾數(shù)為2)最多只能用一天,則不同的用車方案種數(shù)是(

A.4B.12C.16D.24

【答案】B

【解析】

根據(jù)題意先安排安排奇數(shù)日出行再安排偶數(shù)日出行分步分類求解即可.

15日至18日,有2天奇數(shù)日和2天偶數(shù)日,車牌尾數(shù)中有2個奇數(shù)和2個偶數(shù).

第一步安排奇數(shù)日出行,每天都有2種選擇,共有.

第二步安排偶數(shù)日出行,分兩類:

第一類,先選1天安排甲的車,另外一天安排其他車,有2種;

第二類,不安排甲的車,只有1種選擇,共計.

根據(jù)分步計數(shù)原理,不同的用車方案種數(shù)共有,

故選:B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列五個命題:

①“”是“R上的增函數(shù)”的充分不必要條件;

②函數(shù)有兩個零點;

③集合A={2,3}B={1,23},從AB中各任意取一個數(shù),則這兩數(shù)之和等于4的概率是;

④動圓C即與定圓相外切,又與y軸相切,則圓心C的軌跡方程是

⑤若對任意的正數(shù)x,不等式 恒成立,則實數(shù)的取值范圍是

其中正確的命題序號是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)要完成下列三項抽樣調(diào)查:罐奶粉中抽取罐進行食品安全衛(wèi)生檢查;高二年級有名學生,為調(diào)查學生的學習情況抽取一個容量為的樣本;從某社區(qū)戶高收入家庭,戶中等收入家庭,戶低收入家庭中選出戶進行消費水平調(diào)查.以下各調(diào)查方法較為合理的是(

A.系統(tǒng)抽樣,簡單隨機抽樣,分層抽樣

B.簡單隨機抽樣,分層抽樣,系統(tǒng)抽樣

C.分層抽樣,系統(tǒng)抽樣,簡單隨機抽樣

D.簡單隨機抽樣,系統(tǒng)抽樣,分層抽樣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】進入月份,香港大學自主招生開始報名,“五校聯(lián)盟”統(tǒng)一對五校高三學生進行綜合素質(zhì)測試,在所有參加測試的學生中隨機抽取了部分學生的成績,得到如圖所示的成績頻率分布直方圖:

(1)估計五校學生綜合素質(zhì)成績的平均值;

(2)某校決定從本校綜合素質(zhì)成績排名前名同學中,推薦人參加自主招生考試,若已知名同學中有名理科生,2名文科生,試求這3人中含文科生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】畫糖是一種以糖為材料在石板上進行造型的民間藝術(shù),常見于公園與旅游景點.某師傅制作了一種新造型糖畫,為了進行合理定價先進性試銷售,其單價(元)與銷量(個)相關(guān)數(shù)據(jù)如下表:

(1)已知銷量與單價具有線性相關(guān)關(guān)系,求關(guān)于的線性相關(guān)方程;

(2)若該新造型糖畫每個的成本為元,要使得進入售賣時利潤最大,請利用所求的線性相關(guān)關(guān)系確定單價應該定為多少元?(結(jié)果保留到整數(shù))

參考公式:線性回歸方程中斜率和截距最小二乘法估計計算公式:

.參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點為,點在橢圓上.

(1)設(shè)點到直線的距離為,證明:為定值;

(2)若是橢圓上的兩個動點(都不與重合),直線的斜率互為相反數(shù),求直線的斜率(結(jié)果用表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學經(jīng)典《九章算術(shù)》系統(tǒng)地總結(jié)了戰(zhàn)國、秦、漢時期的數(shù)學成就,書中將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的三棱錐稱之為鱉臑,如圖為一個陽馬與一個鱉臑的組合體,已知平面,四邊形為正方形,,,若鱉臑的外接球的體積為,則陽馬的外接球的表面積等于______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的圖象在點處的切線方程;

(Ⅱ)若,且對任意恒成立,求的最大值;

(Ⅲ)當時,證明:.

查看答案和解析>>

同步練習冊答案