【題目】現(xiàn)要完成下列三項抽樣調查:罐奶粉中抽取罐進行食品安全衛(wèi)生檢查;高二年級有名學生,為調查學生的學習情況抽取一個容量為的樣本;從某社區(qū)戶高收入家庭,戶中等收入家庭,戶低收入家庭中選出戶進行消費水平調查.以下各調查方法較為合理的是(

A.系統(tǒng)抽樣,簡單隨機抽樣,分層抽樣

B.簡單隨機抽樣,分層抽樣,系統(tǒng)抽樣

C.分層抽樣,系統(tǒng)抽樣,簡單隨機抽樣

D.簡單隨機抽樣,系統(tǒng)抽樣,分層抽樣

【答案】D

【解析】

根據簡單隨機抽樣、系統(tǒng)抽樣及分層抽樣的概念及適用情況,直接判斷求解即可.

對于① ,罐奶粉中抽取罐進行食品安全衛(wèi)生檢查,由于總體數(shù)量較少,因此可用簡單隨機抽樣的方法調查.

對于② ,高二年級有名學生,為調查學生的學習情況抽取一個容量為的樣本.總體數(shù)量較多,且對于學生來說,有可以直接使用的學號等編碼,所以選擇系統(tǒng)抽樣調查.

對于③ ,從某社區(qū)戶高收入家庭,戶中等收入家庭,戶低收入家庭中選出戶進行消費水平調查.調查的各個家庭收入有差距,因而選擇分層抽樣調查的方法.

綜上可知,對三項分別使用的調查方法為: 簡單隨機抽樣; 擇系統(tǒng)抽樣; 分層抽樣.

故選:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】圖一是美麗的勾股樹,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1勾股樹,重復圖二的作法,得到圖三為第2勾股樹,以此類推,已知最大的正方形面積為1,則第勾股樹所有正方形的個數(shù)與面積的和分別為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓 的離心率為,過其右焦點與長軸垂直的直線與橢圓在第一象限相交于點, .

(1)求橢圓的標準方程;

(2)設橢圓的左頂點為,右頂點為,點是橢圓上的動點,且點與點, 不重合,直線與直線相交于點,直線與直線相交于點,求證:以線段為直徑的圓恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子中裝有除顏色外其他均相同的編號為a,b的兩個黑球和編號為c,d,e的三個紅球,從中任意摸出兩個球.

1)求恰好摸出1個黑球和1個紅球的概率:

2)求至少摸出1個黑球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)是奇函數(shù),且滿足 ,數(shù)列滿足),則__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在中,,點在直線上,若的面積為10,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位:)和年利潤(單位:千元)的影響,對近13年的宣傳費和年銷售量 數(shù)據作了初步處理得到下面的散點圖及一些統(tǒng)計量的值

由散點圖知,建立關于的回歸方程是合理的,經計算得如下數(shù)據

10.15

109.94

0.16

-2.10

0.21

21.22

(1)根據以上信息,建立關于的回歸方程;

(2)已知這種產品的年利潤的關系為根據(1)的結果,求當年宣傳費,年利潤的預報值是多少

對于一組數(shù)據,其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知橢圓C:的左右焦點分別為F1,F(xiàn)2,直線l:y=kx+m與橢圓C交于A,B兩點.O為坐標原點.

(1)若直線l過點F1,且|AB|=,求k的值;

(2)若以AB為直徑的圓過原點O,試探究點O到直線AB的距離是否為定值?若是,求出該定值;若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過定點A,該點也在拋物線上,若拋物線與圓有公共點P,且拋物線在P點處的切線與圓C也相切,則圓C上的點到拋物線的準線的距離的最小值為__________

查看答案和解析>>

同步練習冊答案