【題目】進入月份,香港大學(xué)自主招生開始報名,“五校聯(lián)盟”統(tǒng)一對五校高三學(xué)生進行綜合素質(zhì)測試,在所有參加測試的學(xué)生中隨機抽取了部分學(xué)生的成績,得到如圖所示的成績頻率分布直方圖:

(1)估計五校學(xué)生綜合素質(zhì)成績的平均值;

(2)某校決定從本校綜合素質(zhì)成績排名前名同學(xué)中,推薦人參加自主招生考試,若已知名同學(xué)中有名理科生,2名文科生,試求這3人中含文科生的概率.

【答案】(1) 平均值為 (2)

【解析】

(1)利用頻率分布直方圖平均值公式求解即可;(2)由列舉法,從6人中選出3人,所有的可能的結(jié)果共20種, 含有文科學(xué)生的有16種,求解即可.

(1)依題意可知:

所以綜合素質(zhì)成績的的平均值為.

(2)設(shè)這名同學(xué)分別為其中設(shè)為文科生,

從6人中選出3人,所有的可能的結(jié)果

共20種,

其中含有文科學(xué)生的有

16種

所以含文科生的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中 ,為自然對數(shù)的底數(shù))

(Ⅰ)若函數(shù)無極值,求實數(shù)的取值范圍;

(Ⅱ)當(dāng)時,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是直角梯形,,,,側(cè)面底面,且為等腰直角三角形,,的中點.

1)求證:平面;

2)求直線與平面所成線面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)若上恰有2個點到的距離等于,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)參加一項射擊游戲,兩人約定,其中任何一人每射擊一次,擊中目標(biāo)得2分,未擊中目標(biāo)得0.若甲、乙兩名同學(xué)射擊的命中率分別為p,且甲、乙兩人各射擊一次所得分數(shù)之和為2的概率為,假設(shè)甲、乙兩人射擊互不影響.

1)求p的值;

2)記甲、乙兩人各射擊一次所得分數(shù)之和為X,求X的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓C與x軸相切于點T(2,0),與y軸的正半軸相交于A,B兩點(A在B的上方),且AB=3.

(1)求圓C的方程;

(2)直線BT上是否存在點P滿足PA2+PB2+PT2=12,若存在,求出點P的坐標(biāo),若不存在,請說明理由;

(3)如果圓C上存在E,F(xiàn)兩點,使得射線AB平分∠EAF,求證:直線EF的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,命題方程表示焦點在軸上的橢圓,命題方程表示雙曲線.

(1)若命題是真命題,求實數(shù)的范圍;

(2)若命題“”為真命題,“”是假命題,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的面積為,且與軸、軸分別交于兩點.

1)求圓的方程;

(2)若直線與線段相交,求實數(shù)的取值范圍;

(3)試討論直線與(1)小題所求圓的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,棱長為2,M,N分別為A1B,AC的中點.

(1)證明:MN//B1C;

(2)求A1B與平面A1B1CD所成角的大。

查看答案和解析>>

同步練習(xí)冊答案