【題目】衡州市臨棗中學(xué)高二某小組隨機調(diào)查芙蓉社區(qū)160個人,以研究這一社區(qū)居民在20:00-22:00時間段的休閑方式與性別的關(guān)系,得到下面的數(shù)據(jù)表:

休閑方式

性別

看電視

看書

合計

20

100

120

20

20

40

合計

40

120

160

下面臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(Ⅰ)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機變量,求 的分別列和期望;

(Ⅱ)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00-22:00時間段的休閑方式與性別有關(guān)系”?

【答案】(Ⅰ)(Ⅱ)有99%的把握

【解析】試題分析:(I)先根據(jù)數(shù)據(jù)表求得每個男生在這一時間段以看書為休閑方式的概率,然后利用二項分布寫出分布列并求出數(shù)學(xué)期望.(2)通過計算,故有把握.

試題解析:(I)依題意,隨機變量的取值為0,1,2,3,且每個男生在這一時間段以看書為休閑方式的概率為,

,

,

所以的分布列為:

0

1

2

3

所以 .

(Ⅱ)根據(jù)樣本提供的列聯(lián)表可得

所以我們有99%的把握認(rèn)為“在20:00-22:00時間段性別與休閑方式有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角梯形PBCD中,,,,A為PD的中點,如圖.將PAB沿AB折到SAB的位置,使SBBC,點E在SD上,且,如圖.

)求證:SA平面ABCD;

)求二面角EACD的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的一個短軸端點及兩個焦點構(gòu)成的三角形的面積為,圓C方程為.

(1)求橢圓及圓C的方程;

(2)過原點O作直線l與圓C交于A,B兩點,若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex-ax-2.

(1)求f(x)的單調(diào)區(qū)間;

(2)若a=1,k為整數(shù),且當(dāng)x>0時,(x-k)f(x)+x+1>0,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

其中,若函數(shù),且它的最小正周期為

(普通中學(xué)只做1,2問)

(1)求的值,并求出函數(shù)的單調(diào)遞增區(qū)間;

(2)當(dāng)(其中)時,記函數(shù)的最大值與最小值分

別為,設(shè),求函數(shù)的解

析式;

(3)在第(2)問的前提下,已知函數(shù) ,若對于任意 ,總存在,使得

成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了參加師大附中第30屆田徑運動會的開幕式,高三年級某6個班聯(lián)合到集市購買了6根竹竿,作為班期的旗桿之用,它們的長度分別為3.8,4.3,3.6,4.5,4.0,4.1單位:米

1若從中隨機抽取兩根竹竿,求長度之差不超過0.5米的概率;

2若長度不小于4米的竹竿價格為每根10元,長度小于4米的竹竿價格為每根從這6根竹竿中隨機抽取兩根,若期望這兩根竹竿的價格之和為18元,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為, ,點在橢圓上.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)是否存在斜率為2的直線,使得當(dāng)直線與橢圓有兩個不同交點時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分14本題共有2個小題,第1小題滿分6分,第2小題滿分8

沙漏是古代的一種時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細(xì)沙全部在上部容器中,細(xì)通過連接管道全部到下部容器所需要的時間稱為該沙漏的一個沙時。如圖,某沙漏由上下兩個圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時,高度為圓錐高度的細(xì)管長忽略不

1如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個沙時為多少秒精確1秒

2細(xì)全部漏入下部,恰好堆成一蓋沙漏底的圓錐形沙求此錐形高度精確0.1cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù).以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,圓的方程為.

寫出直線的普通方程和圓的直角坐標(biāo)方程;

若點的直角坐標(biāo)為,圓與直線交于兩點,求的值.

查看答案和解析>>

同步練習(xí)冊答案