【題目】為了參加師大附中第30屆田徑運(yùn)動會的開幕式,高三年級某6個班聯(lián)合到集市購買了6根竹竿,作為班期的旗桿之用,它們的長度分別為3.8,4.3,3.6,4.5,4.0,4.1(單位:米).
(1)若從中隨機(jī)抽取兩根竹竿,求長度之差不超過0.5米的概率;
(2)若長度不小于4米的竹竿價格為每根10元,長度小于4米的竹竿價格為每根元.從這6根竹竿中隨機(jī)抽取兩根,若期望這兩根竹竿的價格之和為18元,求的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知兩定點(diǎn)、,⊙C的方程為.當(dāng)⊙C的半徑取最小值時:
(1)求出此時m的值,并寫出⊙C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在異于點(diǎn)E的另外一個點(diǎn)F,使得對于⊙C上任意一點(diǎn)P,總有為定值?若存在,求出點(diǎn)F的坐標(biāo),若不存在,請說明你的理由;
(3)在第(2)問的條件下,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足:對任意,,都有成立,且時,.
(1)求的值,并證明:當(dāng)時,;
(2)判斷的單調(diào)性并加以證明;
(3)若函數(shù)在上遞減,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線經(jīng)過點(diǎn)A (1,0).
(1)若直線與圓C相切,求直線的方程;
(2)若直線與圓C相交于P,Q兩點(diǎn),求三角形CPQ面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】衡州市臨棗中學(xué)高二某小組隨機(jī)調(diào)查芙蓉社區(qū)160個人,以研究這一社區(qū)居民在20:00-22:00時間段的休閑方式與性別的關(guān)系,得到下面的數(shù)據(jù)表:
休閑方式 性別 | 看電視 | 看書 | 合計 |
男 | 20 | 100 | 120 |
女 | 20 | 20 | 40 |
合計 | 40 | 120 | 160 |
下面臨界值表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅰ)將此樣本的頻率估計為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機(jī)變量,求 的分別列和期望;
(Ⅱ)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00-22:00時間段的休閑方式與性別有關(guān)系”?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“奶茶妹妹”對某時間段的奶茶銷售量及其價格進(jìn)行調(diào)查,統(tǒng)計出售價元和銷售量杯之間的一組數(shù)據(jù)如下表所示:
價格 | 5 | 5.5 | 6.5 | 7 |
銷售量 | 12 | 10 | 6 | 4 |
通過分析,發(fā)現(xiàn)銷售量對奶茶的價格具有線性相關(guān)關(guān)系.
(Ⅰ)求銷售量對奶茶的價格的回歸直線方程;
(Ⅱ)欲使銷售量為杯,則價格應(yīng)定為多少?
附:線性回歸方程為,其中,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=2n2,{bn}為等比數(shù)列,且a1=b1,b2(a2-a1)=b1.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)), ,.
(1)求曲線在處的切線方程;
(2)討論函數(shù)的極小值;
(3)若對任意的,總存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:①;
②曲線上的所有點(diǎn)都落在圓內(nèi).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com