【題目】雙曲線的左、右焦點為,,為右支上的動點(非頂點),為的內(nèi)心.當變化時,的軌跡為( )
A.直線的一部分B.橢圓的一部分
C.雙曲線的一部分D.無法確定
【答案】A
【解析】
將內(nèi)切圓的圓心坐標進行轉(zhuǎn)化成圓與橫軸切點Q的橫坐標,PF1﹣PF2=F1Q﹣F2Q=2a,F1Q+F2Q=F1F2解出OQ,可得結(jié)論.
如圖設(shè)切點分別為M,N,Q,則△PF1F2的內(nèi)切圓的圓心的橫坐標與Q橫坐標相同.
由雙曲線的定義,PF1﹣PF2=2a.
由圓的切線性質(zhì)PF1﹣PF2=F1M﹣F2N=F1Q﹣F2Q=2a,
∵F1Q+F2Q=F1F2=2c,
∴F1Q=a+c,F2Q=c﹣a,
∴OQ=OF2﹣QF2=c﹣(c﹣a)=a.
∴△F1PF2內(nèi)切圓與x軸的切點坐標為(a,0),
∴當P變化時,I的軌跡為直線的一部分.
故選:A.
科目:高中數(shù)學 來源: 題型:
【題目】如下圖所示,在三棱錐P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,點D,E分別在棱PB,PC上,且DE∥BC.
(1)求證:BC⊥平面PAC;
(2)當D為PB的中點時,求AD與平面PAC所成的角的正弦值;
(3)是否存在點E,使得二面角A-DE-P為直二面角?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱柱的側(cè)棱垂直于底面, ,點分別是和的中點.
(1)證明:平面;
(2)設(shè),當為何值時,平面,試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個不同的實根,求實數(shù)的值;
(3)數(shù)列滿足.
證明:①;
②.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線的準線與軸交于點,過點作直線交拋物線于,兩點.
(1)求直線的斜率的取值范圍;
(2)若線段的垂直平分線交軸于,求證:;
(3)若直線的斜率依次為,,,…,,…,線段的垂直平分線與軸的交點依次為,,,…,,…,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年的流感來得要比往年更猛烈一些據(jù)四川電視臺“新聞現(xiàn)場”播報,近日四川省人民醫(yī)院一天的最高接診量超過了一萬四千人,成都市婦女兒童中心醫(yī)院接診量每天都在九千人次以上這些浩浩蕩蕩的看病大軍中,有不少人都是因為感冒來的醫(yī)院某課外興趣小組趁著寒假假期空閑,欲研究晝夜溫差大小與患感冒人數(shù)之間的關(guān)系,他們分別到成都市氣象局與跳傘塔社區(qū)醫(yī)院抄錄了去年1到6月每月20日的晝夜溫差情況與患感冒就診的人數(shù),得到如下資料:
日期 | 1月20日 | 2月20日 | 3月20日 | 4月20日 | 5月20日 | 6月20日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)人 | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2月至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考公式: ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com