【題目】已知橢圓經(jīng)過點(diǎn),離心率為,左、右焦點(diǎn)分別為, .
(1)求橢圓的方程;
(2)若直線: 與橢圓交于, 兩點(diǎn),與以為直徑的圓交于, 兩點(diǎn),且滿足,求直線的方程.
【答案】(1)(2)或
【解析】試題分析:(1)由題意可得,解出即可;(2)由題意可得以為直徑的圓的方程為,利用點(diǎn)到直線的距離公式可得:圓心到直線的距離及,可得的取值范圍,利用弦長公式可得,設(shè), ,把直線的方程與橢圓的方程聯(lián)立可得根與系數(shù)的關(guān)系,進(jìn)而得到弦長,由,即可解得.
試題解析:(1)由題設(shè)知,解得,∴橢圓的方程為.
(2)由題設(shè),以為直徑的圓的方程為,
∴圓心到直線的距離.
由,得, .
∴ .
設(shè), ,
由得,
由根與系數(shù)的關(guān)系得, ,
∴ .
由,得,解得,滿足.
∴直線的方程為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是雙曲線的左、右焦點(diǎn),過點(diǎn)作垂直與軸的直線交雙曲線于,兩點(diǎn),若為銳角三角形,則雙曲線的離心率的取值范圍是_______.
【答案】
【解析】
根據(jù)雙曲線的通徑求得點(diǎn)的坐標(biāo),將三角形為銳角三角形,轉(zhuǎn)化為,即,將表達(dá)式轉(zhuǎn)化為含有離心率的不等式,解不等式求得離心率的取值范圍.
根據(jù)雙曲線的通徑可知,由于三角形為銳角三角形,結(jié)合雙曲線的對稱性可知,故,即,即,解得,故離心率的取值范圍是.
【點(diǎn)睛】
本小題主要考查雙曲線的離心率的取值范圍的求法,考查雙曲線的通徑,考查雙曲線的對稱性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.本小題的主要突破口在將三角形為銳角三角形,轉(zhuǎn)化為,利用列不等式,再將不等式轉(zhuǎn)化為只含離心率的表達(dá)式,解不等式求得雙曲線離心率的取值范圍.
【題型】填空題
【結(jié)束】
17
【題目】已知命題:方程有兩個(gè)不相等的實(shí)數(shù)根;命題:不等式的解集為.若或為真,為假,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某市主辦的科技知識(shí)競賽的學(xué)生成績中隨機(jī)選取了40名學(xué)生的成績作為樣本,已知這些成績?nèi)吭?0分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組;;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
求成績在區(qū)間內(nèi)的學(xué)生人數(shù);
估計(jì)這40名學(xué)生成績的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要條件;
(2)求實(shí)數(shù)a的一個(gè)值,使它成為M∩P={x|5<x≤8}的一個(gè)充分但不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)確定函數(shù)在定義域上的單調(diào)性;
(2)若在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn).
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{}是等差數(shù)列,數(shù)列{}的前項(xiàng)和滿足,,且
(1)求數(shù)列{}和{}的通項(xiàng)公式:
(2)設(shè)為數(shù)列{.}的前項(xiàng)和,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的方程為,拋物線:的焦點(diǎn)為,點(diǎn)是拋物線上到直線距離最小的點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)若直線與拋物線交于兩點(diǎn),為中點(diǎn),且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com