分析 由題意知mx2+mx+2>0在R上恒成立,因二次項的系數(shù)是參數(shù),所以分m=0和m≠0兩種情況,再利用二次函數(shù)的性質即開口方向和判別式的符號,列出式子求解,最后把這兩種結果并在一起.
解答 解:∵f(x)=$\sqrt{m{x^2}+mx+2}$的定義域為R,
∴mx2+mx+2≥0在R上恒成立,
①當m=0時,有2>0在R上恒成立,故符合條件;
②當m≠0時,由$\left\{\begin{array}{l}{m>0}\\{{m}^{2}-8m≤0}\end{array}\right.$,解得0<m≤8,
綜上,實數(shù)m的取值范圍是[0,8].
故答案為:[0,8].
點評 本題的考點是對數(shù)函數(shù)的定義域,考查了含有參數(shù)的不等式恒成立問題,由于含有參數(shù)需要進行分類討論,易漏二次項系數(shù)為零這種情況,當二次項系數(shù)不為零時利用二次函數(shù)的性質列出等價條件求解.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分而不必要的條件 | B. | 必要而不充分的條件 | ||
C. | 充要條件 | D. | 既不充分也不必要的條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ | B. | f(x)=lgx2,g(x)=2lgx | ||
C. | f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1 | D. | f(x)=$\sqrt{x-1}$,g(x)=$\sqrt{x+1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(1)<f(2)<f(4) | B. | f(2)<f(1)<f(4) | C. | f(4)<f(2)<f(1) | D. | f(4)<f(1)<f(2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $10\sqrt{2}a$ | B. | 10a | C. | $(5+\sqrt{5})a$ | D. | $12\sqrt{2}a$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com