12.用”更相減損術(shù)”求得168與486的最大公約數(shù)是( 。
A.16B.6C.4D.3

分析 利用更相減損術(shù)即可得出.

解答 解:486-168=318,318-168=150,168-150=18,150-18=132,132-18=114,114-18=96,96-18=78,78-18=60,60-18=42,42-18=24,24-18=6,18-6=12,12-6=6.
∴168與486的最大公約數(shù)是6.
故選:B.

點評 本題考查了更相減損術(shù)的應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知y=f(x)(x∈R)的導(dǎo)函數(shù)為f′(x).若f(x)-f(-x)=2x,且當(dāng)x≥0時,f′(x)>1,則不等式f(x)-f(x-1)>1的解集是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,其中左焦點為F(-2,0)
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1外,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.為了得到函數(shù)y=$\sqrt{2}$cos(3x-$\frac{π}{4}$)的圖象,可以將函數(shù)y=$\sqrt{2}$cos3x的圖象( 。
A.向右平移$\frac{π}{4}$個單位B.向左平移$\frac{π}{4}$個單位
C.向右平移$\frac{π}{12}$個單位D.向左平移$\frac{π}{12}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$,則f(f($\frac{1}{e}$))=( 。
A.$\frac{1}{e}$B.eC.-$\frac{1}{e}$D.-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,則輸出S=(  )
A.2B.6C.31D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知點M(x0,y0)在圓O:x2+y2=4上運動(O為圓心),N(4,0),點P(x,y)為線段MN的中點.
(1)求點P(x,y)的軌跡方程;
(2)求點P(x,y)到直線3x+4y-86=0的距離的最大值和最小值.
(3)設(shè)直線l:y=x+b與圓O相交于A,B兩點,問當(dāng)b取何值時,三角形AOB的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若不等式組$\left\{\begin{array}{l}x≤1\\ y≤3\\ 2x-y+λ-2≥0\end{array}\right.$表示的平面區(qū)域經(jīng)過所有四個象限,則實數(shù)λ的取值范圍是( 。
A.(-∞,4)B.[1,2]C.[2,4]D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\sqrt{m{x^2}+mx+2}$的定義域是R,則實數(shù)m的取值范圍是[0,8].

查看答案和解析>>

同步練習(xí)冊答案