分析 (I)由已知利用同角三角函數(shù)基本關(guān)系式可求tanB的值,利用兩角和的正切函數(shù)公式可求tan(B+C),利用三角形內(nèi)角和定理,誘導(dǎo)公式即可得解tanA的值.
(II)結(jié)合范圍0°<A<180°,由(I)可得A=135°,利用同角三角函數(shù)基本關(guān)系式可求cosB,sinB,sinC的值,利用正弦定理可求a,進(jìn)而利用三角形面積公式即可計(jì)算得解.
解答 (本題滿分為14分)
解:(I)在△ABC中,∵cosB=$\frac{2\sqrt{5}}{5}$,
∴B為銳角,tanB=$\frac{1}{2}$,…(2分)
又tanC=$\frac{1}{3}$,tan(B+C)=$\frac{tanB+tanC}{1-tanBtanC}$=$\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}×\frac{1}{3}}$=1,…(5分)
∴tanA=tan[180°-(B+C)]=-tan(B+C),
∴tanA=-1. …(7分)
(II) 因0°<A<180°,由(I)結(jié)論可得:A=135°,…(8分)
∴在△ABC中,B,C均為銳角
∵cosB=$\frac{2\sqrt{5}}{5}$,tanC=$\frac{1}{3}$,
∴sinB=$\frac{\sqrt{5}}{5}$,sinC=$\frac{\sqrt{10}}{10}$.…(11分)
∴由$\frac{a}{sinA}=\frac{c}{sinC}$,得a=$\sqrt{5}$,…(13分)
故△ABC的面積為:S=$\frac{1}{2}$acsinB=$\frac{1}{2}$.…(14分)
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的正切函數(shù)公式,三角形內(nèi)角和定理,誘導(dǎo)公式,正弦定理,三角形面積公式在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∁UA∪(A∩B) | B. | ∁UA∩∁UB | C. | ∁UA∪∁UB | D. | ∁U(A∪B)∪(A∩B) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com