11.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為$\sqrt{3}$,過左焦點(diǎn)F1(-c,0)作圓x2+y2=a2的切線,切點(diǎn)為E,延長F1E交拋物線y2=4cx于P,Q兩點(diǎn),則|PE|+|QE|的值為(  )
A.$10\sqrt{2}a$B.10aC.$(5+\sqrt{5})a$D.$12\sqrt{2}a$

分析 求出E,P,Q的坐標(biāo),利用距離公式,即可得出結(jié)論.

解答 解:設(shè)直線的傾斜角為α,則由題意$\frac{c}{a}$=$\sqrt{3}$,∴sinα=$\frac{\sqrt{3}}{3}$,
∴tanα=$\frac{\sqrt{2}}{2}$,
切線方程為y=$\frac{\sqrt{2}}{2}$(x+c),代入y2=4cx,
可得x2-6cx+c2=0,∴x=(3±2$\sqrt{2}$)c,
∴P((3+2$\sqrt{2}$)c,(2$\sqrt{2}$+2)c),
Q((3-2$\sqrt{2}$)c,(2$\sqrt{2}$-2)c),
直線OE與PE的方程分別為y=-$\sqrt{2}$x與y=$\frac{\sqrt{2}}{2}$(x+c),
聯(lián)立可得E(-$\frac{1}{3}$c,$\frac{\sqrt{2}}{3}$c),
∴|PE|+|QE|=$\sqrt{(\frac{10}{3}+2\sqrt{2})^{2}+(\frac{5\sqrt{2}}{3}+2)^{2}}$c+$\sqrt{(\frac{10}{3}-2\sqrt{2})^{2}+(\frac{5\sqrt{2}}{3}-2)^{2}}$c=($\frac{5\sqrt{2}}{3}$+2)c+($\frac{5\sqrt{2}}{3}$-2)c=$\frac{10\sqrt{2}}{3}$c=10$\sqrt{2}$a,
故選A.

點(diǎn)評 本題考查直線與圓、拋物線的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若不等式組$\left\{\begin{array}{l}x≤1\\ y≤3\\ 2x-y+λ-2≥0\end{array}\right.$表示的平面區(qū)域經(jīng)過所有四個象限,則實(shí)數(shù)λ的取值范圍是(  )
A.(-∞,4)B.[1,2]C.[2,4]D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\sqrt{m{x^2}+mx+2}$的定義域是R,則實(shí)數(shù)m的取值范圍是[0,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知集合A={x|x2-2x+a≥0},且1∉A,則實(shí)數(shù)a的取值范圍是a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.直線l:y=kx與雙曲線C:x2-y2=2交于不同的兩點(diǎn),則斜率k的取值范圍是( 。
A.(0,1)B.$(-\sqrt{2},\sqrt{2})$C.(-1,1)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知命題p:|4-x|≤6,q:x2-2x+1-a2≥0(a>0),若非p是q的充分不必要條件,則a的取值范圍是(0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+a|x-1|+1(a∈R),其中a≥0,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.點(diǎn)P(-2,1)關(guān)于直線y=x+1對稱點(diǎn)是(0,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=a-$\frac{2}{{3}^{x}+1}$(a∈R)
(1)判斷函數(shù)f(x)的單調(diào)性并給出證明;
(2)若函數(shù)f(x)是奇函數(shù),則f(x)≥$\frac{m}{{3}^{x}}$當(dāng)x∈[1,2]時(shí)恒成立,求m的最大值.

查看答案和解析>>

同步練習(xí)冊答案