【題目】如圖,欲在一四邊形花壇內(nèi)挖一個(gè)等腰三角形的水池,且,已知四邊形中,是等腰直角三角形,米,是等腰三角形,,的大小為,要求的三個(gè)頂點(diǎn)在花壇的邊緣上(即在四邊形的邊上),設(shè)點(diǎn)到水池底邊的距離為,水池的面積為平方米.

1)求的長(zhǎng);

2)試將表示成關(guān)于的函數(shù),并求出的最大值.

【答案】114;(2,最大值為;

【解析】

(1) 設(shè)交于,在兩個(gè)三角形中計(jì)算出,再相加即可得到;

(2)兩種情況討論得到關(guān)于的函數(shù),再分段求最大值,即可得到.

(1)設(shè)交于,如圖所示:

因?yàn)?/span>,,所以的垂直平分線,所以的中點(diǎn),

所以,

在直角三角形,,

因?yàn)?/span> ,

所以,

所以,

所以,

解得(舍去),

所以,

所以.

(2)因?yàn)?/span>,所以時(shí)的垂直平分線,,

所以當(dāng)時(shí),點(diǎn)邊上,所以,

所以,此時(shí)當(dāng)時(shí),取得最大值36,

當(dāng)時(shí),點(diǎn)邊上,此時(shí),

所以,

所以,

所以當(dāng) 時(shí),取得最大值,最大值為.

因?yàn)?/span>,

所以當(dāng)時(shí),的最大值為.

綜上所述:,的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知位數(shù)滿足下列條件:各個(gè)數(shù)字只能從集合中選取;若其中有數(shù)字4,則在4的前面不含2.將這樣的n位數(shù)的個(gè)數(shù)記為

1)求

2)探究之間的關(guān)系,求出數(shù)列的通項(xiàng)公式;

3)對(duì)于每個(gè)正整數(shù),在之間插入個(gè)得到一個(gè)新數(shù)列,設(shè)是數(shù)列的前項(xiàng)和,試探究能否成立?寫出你探究得到的結(jié)論并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,為棱的中點(diǎn),.

(1)證明:平面;

(2)設(shè)二面角的正切值為,,,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:

是偶函數(shù);②在區(qū)間單調(diào)遞減;

個(gè)零點(diǎn);④的最大值為.

其中所有正確結(jié)論的編號(hào)是(

A.①②④B.②④C.①④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方體,中,,過三點(diǎn)的平面D截去長(zhǎng)方體的一個(gè)角后,得到如圖所示的幾何體.

(1)求幾何體的體積;

(2)求直線與面所成角.(用反三角表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓的左、右兩個(gè)焦點(diǎn)分別為設(shè),若為正三角形且周長(zhǎng)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若過點(diǎn)且斜率為的直線與橢圓相交于不同的兩點(diǎn),是否存在實(shí)數(shù)使成立,若存在,求出的值,若不存在,請(qǐng)說明理由;

(3)若過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)兩點(diǎn),記的面積記為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)若直線與圓相切,求被圓所截得弦長(zhǎng)取最小值時(shí)直線的斜率;

2時(shí),表示圓,問是否存在一條直線,使得它和所有的圓都沒有公共點(diǎn)?如果存在,求出直線,若不存在,說明理由;

3)若滿足不等式和等式的點(diǎn)集是一條線段,求取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的中心在原點(diǎn),、為左、右焦點(diǎn),焦距是實(shí)軸長(zhǎng)的倍,雙曲線過點(diǎn).

1)求雙曲線的標(biāo)準(zhǔn)方程;

2)若點(diǎn)在雙曲線上,求證:點(diǎn)在以為直徑的圓上;

3)在(2)的條件下,若直線交雙曲線于另一點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為降低空氣污染,提高環(huán)境質(zhì)量,政府決定對(duì)汽車尾氣進(jìn)行整治.某廠家生產(chǎn)甲、乙兩種不同型號(hào)的汽車尾氣凈化器,為保證凈化器的質(zhì)量,分別從甲、乙兩種型號(hào)的凈化器中隨機(jī)抽取100件作為樣本進(jìn)行產(chǎn)品性能質(zhì)量評(píng)估,評(píng)估綜合得分都在區(qū)間.已知評(píng)估綜合得分與產(chǎn)品等級(jí)如下表:

根據(jù)評(píng)估綜合得分,統(tǒng)計(jì)整理得到了甲型號(hào)的樣本頻數(shù)分布表和乙型號(hào)的樣本頻率分布直方圖(圖表如下).

甲型 乙型

(Ⅰ)從廠家生產(chǎn)的乙型凈化器中隨機(jī)抽取一件,估計(jì)這件產(chǎn)品為二級(jí)品的概率;

(Ⅱ)從廠家生產(chǎn)的乙型凈化器中隨機(jī)抽取3件,設(shè)隨機(jī)變量為其中二級(jí)品的個(gè)數(shù),求的分布列和數(shù)學(xué)期望;

(Ⅲ)根據(jù)圖表數(shù)據(jù),請(qǐng)自定標(biāo)準(zhǔn),對(duì)甲、乙兩種型號(hào)汽車尾氣凈化器的優(yōu)劣情況進(jìn)行比較.

查看答案和解析>>

同步練習(xí)冊(cè)答案