【題目】在長方體,中,,過三點(diǎn)的平面D截去長方體的一個角后,得到如圖所示的幾何體.

(1)求幾何體的體積;

(2)求直線與面所成角.(用反三角表示)

【答案】(1);2.

【解析】

1)由已知中,圖示的幾何體 是由過、、三點(diǎn)的平面截去長方體得到,故,將 ,代入即可得到答案;

2)解以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,求出各點(diǎn)坐標(biāo),進(jìn)而求出直線的方向向量及平面的法向量,代入直線與平面夾角的向量法公式,即可求出答案.

(1)

(2)以為坐標(biāo)原點(diǎn),分別以,,所在直線為軸,軸,軸建立空間直角坐標(biāo)系,如圖所示:

由題意可知:, ,

,,,

設(shè)面的法向量是 , ,取,

設(shè) 的夾角為,

,

設(shè)直線與面所成的角為,

,

得直線與面 所成的角為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)gx)=-2x+3.

(1)當(dāng)a=2時,求fx)的極值;

(2)討論函數(shù)的單調(diào)性;

(3)若-2≤a≤-1,對任意x1,x2∈[1,2],不等式|fx1)-fx2)|≤t|gx1)-gx2)|恒成立,求實(shí)數(shù)t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,當(dāng)點(diǎn)的圖象上運(yùn)動時,點(diǎn)在函數(shù)的圖象上運(yùn)動.(其中.

1)求的表達(dá)式;

2)設(shè)集合,若為空集),求實(shí)數(shù)的取值范圍;

3)設(shè),若函數(shù))的值域?yàn)?/span>,求實(shí)數(shù)、的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的焦距是,長軸長是短軸長3倍,任作斜率為的直線與橢圓交于兩點(diǎn)(如圖所示),且點(diǎn)在直線的左上方.

1)求橢圓的方程;

2)若,求的面積;

3)證明:的內(nèi)切圓的圓心在一條定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.在如圖所示的陽馬中,側(cè)棱底面,且,點(diǎn) 的中點(diǎn),連接、.

1)證明:平面;

2)證明:平面.試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,請說明理由;

3)記陽馬的體積為,四面體的體積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,欲在一四邊形花壇內(nèi)挖一個等腰三角形的水池,且,已知四邊形中,是等腰直角三角形,米,是等腰三角形,,的大小為,要求的三個頂點(diǎn)在花壇的邊緣上(即在四邊形的邊上),設(shè)點(diǎn)到水池底邊的距離為,水池的面積為平方米.

1)求的長;

2)試將表示成關(guān)于的函數(shù),并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若函數(shù)fx)有兩個零點(diǎn),求實(shí)數(shù)a的取值范圍;

(2)若a=3,且對任意的x1∈[-1,2],總存在,使gx1)-fx2)=0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)是函數(shù)的一個極值點(diǎn),試求的單調(diào)區(qū)間;

(2),是否存在實(shí)數(shù)a,使得在區(qū)間上的最大值為4?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

同步練習(xí)冊答案