點(diǎn)P在雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上,F(xiàn)1、F2是這條雙曲線的兩個焦點(diǎn),∠F1PF2=90°,且△F1PF2的三條邊長成等差數(shù)列,則此雙曲線的離心率是( 。
A、
2
B、
3
C、2
D、5
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)|PF2|,|PF1|,|F1F2|成等差數(shù)列,且分別設(shè)為m-d,m,m+d,則由雙曲線定義和勾股定理求出m=4d=8a,c=
5
2
d,a=
1
2
d,由離心率公式計算即可得到.
解答: 解:設(shè)|PF2|,|PF1|,|F1F2|成等差數(shù)列,
且分別設(shè)為m-d,m,m+d,
則由雙曲線定義和勾股定理可知:m-(m-d)=2a,m+d=2c,
(m-d)2+m2=(m+d)2,
解得m=4d=8a,c=
5
2
d,a=
1
2
d,
故離心率e=
c
a
=5.
故選D.
點(diǎn)評:本題主要考查等差數(shù)列的定義和性質(zhì),以及雙曲線的簡單性質(zhì)的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A、B是直線3x+4y+2=0與圓x2+y2+4y=0的兩個交點(diǎn),則線段AB的垂直平分線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=2,a1+a4=7
(1)求數(shù)列{an}的通項公式
(2)若數(shù)列{an}的前n項和為Sn,求S8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
16
-
y2
9
=1
上一點(diǎn)P對焦點(diǎn)F1,F(xiàn)2的視角為60°,則△F1PF2的面積為(  )
A、2
3
B、3
3
C、6
3
D、9
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一條直線與兩條平行線中的一條垂直,那么它和另一條直線( 。
A、垂直B、平行C、異面D、相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2sinx+x,0<x<π,求f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡
1+tanα
2sin2α+2sinαcosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算 log21=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=(3,4),向量
OB
=(7,12),向量
OC
=(9,16),求證:A,B,C三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊答案