【題目】如圖,在棱長(zhǎng)為1的正方體中,P為線段上的動(dòng)點(diǎn),下列說(shuō)法正確的是( )
A.對(duì)任意點(diǎn)P,平面
B.三棱錐的體積為
C.線段DP長(zhǎng)度的最小值為
D.存在點(diǎn)P,使得DP與平面所成角的大小為
【答案】ABC
【解析】
對(duì)四個(gè)選項(xiàng)逐一分析,
對(duì)于A:平面平面,可得平面;
對(duì)于B:三棱錐的高均為1,底面的面積為,根據(jù)錐體體積公式計(jì)算即可作出判斷;
對(duì)于C:當(dāng)點(diǎn)P為的中點(diǎn)時(shí),DP最小,此時(shí),在中利用勾股定理進(jìn)行計(jì)算可得出DP的最小值;
對(duì)于D:設(shè)點(diǎn)P在平面上的投影為點(diǎn)Q,為DP與平面所成的角,,,而,所以DP與平面所成角的正弦值的取值范圍是,而,從而作出判斷.
由題可知,正方體的面對(duì)角線長(zhǎng)度為,
對(duì)于A:分別連接、、、、,易得平面平面,平面,故對(duì)任意點(diǎn)P,平面,故正確;
對(duì)于B:分別連接、,無(wú)論點(diǎn)P在哪個(gè)位置,三棱錐的高均為1,底面的面積為,所以三棱錐的體積為,故正確;
對(duì)于C:線段DP在中,當(dāng)點(diǎn)P為的中點(diǎn)時(shí),DP最小,此時(shí),在中,,
故DP的最小值為,故正確;
對(duì)于D:點(diǎn)P在平面上的投影在線段上,設(shè)點(diǎn)P的投影為點(diǎn)Q,則為DP與平面所成的角,,,
而,所以DP與平面所成角的正弦值的取值范圍是,而,
所以不存在點(diǎn)P,使得DP與平面所成角的大小為,故錯(cuò)誤.
故選:ABC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓,點(diǎn)是拋物線的焦點(diǎn),過(guò)點(diǎn)F作直線交拋物線于M,N兩點(diǎn),延長(zhǎng),分別交橢圓于A,B兩點(diǎn),記,的面積分別是,.
(1)求的值及拋物線的準(zhǔn)線方程;
(2)求的最小值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:
①是偶函數(shù);②的最大值為;
③在有個(gè)零點(diǎn);④在區(qū)間單調(diào)遞增.
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.①③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校擬從甲、乙兩名同學(xué)中選一人參加疫情知識(shí)問(wèn)答競(jìng)賽,于是抽取了甲、乙兩人最近同時(shí)參加校內(nèi)競(jìng)賽的十次成績(jī),將統(tǒng)計(jì)情況繪制成如圖所示的折線圖.根據(jù)該折線圖,下面結(jié)論正確的是( )
A.甲、乙成績(jī)的中位數(shù)均為7
B.乙的成績(jī)的平均分為6.8
C.甲從第四次到第六次成績(jī)的下降速率要大于乙從第四次到第五次的下降速率
D.甲的成績(jī)的方差小于乙的成績(jī)的方差
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,底面為直角梯形,分別為的中點(diǎn).
(1)求證:平面;
(2)若截面與底面所成銳二面角為,求的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,,求的最大值;
(2)當(dāng)時(shí),討論極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)n個(gè)不同的實(shí)數(shù)a1,a2,…,an可得n!個(gè)不同的排列,每個(gè)排列為一行寫成一個(gè)n!行的數(shù)陣.對(duì)第i行ai1,ai2,…,ain,記bi=-ai1+2ai2-3ai3+…+(-1)nnain,i=1,2,3…,n!.例如用1,2,3可得數(shù)陣如圖,對(duì)于此數(shù)陣中每一列各數(shù)之和都是12,所以bl+b2+…b6=-12+2×12-3×12=-24.那么,在用1,2,3,4,5形成的數(shù)陣中,b1+b2+…b120等于( )
A.-3600B.-1800C.-1080D.-720
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年1月底因新型冠狀病毒感染的肺炎疫情形勢(shì)嚴(yán)峻,避免外出是減少相互交叉感染最有效的方式.在家中適當(dāng)鍛煉,合理休息,能夠提高自身免疫力,抵抗該種病毒.某小區(qū)為了調(diào)查“宅”家居民的運(yùn)動(dòng)情況,從該小區(qū)隨機(jī)抽取了100位成年人,記錄了他們某天的鍛煉時(shí)間,其頻率分布直方圖如下:
(1)求a的值,并估計(jì)這100位居民鍛煉時(shí)間的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)小張是該小區(qū)的一位居民,他記錄了自己“宅”家7天的鍛煉時(shí)長(zhǎng):
序號(hào)n | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
鍛煉時(shí)長(zhǎng)m(單位:分鐘) | 10 | 15 | 12 | 20 | 30 | 25 | 35 |
(Ⅰ)根據(jù)數(shù)據(jù)求m關(guān)于n的線性回歸方程;
(Ⅱ)若(是(1)中的平均值),則當(dāng)天被稱為“有效運(yùn)動(dòng)日”.估計(jì)小張“宅”家第8天是否是“有效運(yùn)動(dòng)日”?
附;在線性回歸方程中,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,直線與相交于,兩點(diǎn),當(dāng)時(shí),
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)在橢圓上是否存在點(diǎn),使得當(dāng)時(shí),的平分線總是平行于軸?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com