分析 (1)利用解析式代入即可
(2)根據(jù)分段函數(shù)判斷求解,先判斷范圍,再運用f(x),g(x) 解析式.
解答 解:(1)∵函數(shù)$f(x)={x^2}-1,g(x)=\left\{\begin{array}{l}x-1,x>0\\ 2-x,x<0\end{array}\right.$
f(g(2))=f(1)=0,
g(f(2))=g(3)=2,
g(g(g(-2)))=g(g(4))=g(3)=2;
(2)$g(f(x))=g({x^2}-1)=\left\{\begin{array}{l}{x^2}-2\;\;,{x^2}-1>0\\ 3-{x^2}\;,{x^2}-1<0\end{array}\right.=\left\{\begin{array}{l}{x^2}\;-2\;\;\;\;,x<-1或x>1\\ 3-{x^2}\;\;\;\;,\;\;\;-1<x<1\end{array}\right.$;
$f(g(x))=\left\{\begin{array}{l}f(x-1)\;\;\;,\;\;x>0\\ f(2-x)\;\;\;,\;\;x<0\end{array}\right.=\left\{\begin{array}{l}{x^2}\;-2x\;\;\;\;\;\;\;,\;x>0\\{x^2}-4x+3\;\;,x<0\end{array}\right.$
點評 本題簡單的考查了函數(shù)的概念,性質(zhì),利用解析式求解函數(shù)值,屬于容易題,關鍵判斷分段函數(shù)的定義域的運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{10}$ | B. | 1+$\frac{1}{1×2}$+$\frac{1}{1×2×3}$+…+$\frac{1}{1×2×…×10}$ | ||
C. | $1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{11}$ | D. | 1+$\frac{1}{1×2}$+$\frac{1}{1×2×3}$+…+$\frac{1}{1×2×…×11}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x2-2x-1與y=t2-2t-1 | B. | y=1與 $y=\frac{x}{x}$ | ||
C. | y=6x與$y=6\sqrt{x^2}$ | D. | $y={(\sqrt{x})^2}$與$y=\root{3}{x^3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0} | B. | {0,1} | C. | {0,1,4} | D. | {0,1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若“p∧q”為假命題,則“p∨q”為真命題 | |
B. | 命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n≠0” | |
C. | 命題“若x=0,則x2-x=0”的逆否命題為真命題 | |
D. | 若命題p:?n∈N,n2>2n,則?p:?n∈N,n2≤2n |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 在△ABC中,角A,B,C的對邊分別是a,b,c,則a>b是cos A<cos B的充要條件 | |
B. | 命題p:對任意的x∈R,x2+x+1>0,則¬p:對任意的x∈R,x2+x+1≤0 | |
C. | 已知p:$\frac{1}{x+1}$>0,則¬p:$\frac{1}{x+1}$≤0 | |
D. | 存在實數(shù)x∈R,使sin x+cos x=$\frac{π}{2}$成立 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com