分析 可設(shè)0<x1<x2,已知函數(shù)的解析式,利用定義法進(jìn)行證明即可.
解答 證明:任取x1,x2∈0,+∞)且x1<x2,
可得f(x1)-f(x2)=x12+1-(x22+1)=x12-x22=(x1+x2)(x1-x2),
∵0<x1<x2,∴x1+x2>0,x1-x2<0,
∴(x1+x2)(x1-x2)<0,
∴f(x1)<f(x2),
所以,函數(shù)f(x)在(0,+∞)上是增函數(shù).
點(diǎn)評(píng) 此題主要考查函數(shù)的單調(diào)性的判斷與證明,是一道基礎(chǔ)題,考查的知識(shí)點(diǎn)比較單一.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 0 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{\frac{π}{3}+2kπ,\frac{4π}{3}+2kπ}](k∈Z)$ | B. | $[{-\frac{2π}{3}+2kπ,\frac{π}{3}+2kπ}](k∈Z)$ | ||
C. | $[{-\frac{π}{8}+2kπ,\frac{3π}{8}+2kπ}](k∈Z)$ | D. | $[{-\frac{π}{6}+2kπ,\frac{5π}{6}+2kπ}](k∈Z)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{18}{5}$ | B. | 5 | C. | 9 | D. | $\frac{9}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com