【題目】如圖1,∠ACB=45°,BC=3,過動點A作AD⊥BC,垂足D在線段BC上且異于點B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示),
(1)當BD的長為多少時,三棱錐A﹣BCD的體積最大;
(2)當三棱錐A﹣BCD的體積最大時,設點E,M分別為棱BC,AC的中點,試在棱CD上確定一點N,使得EN⊥BM,并求EN與平面BMN所成角的大小.
【答案】
(1)解:設BD=x,則CD=3﹣x
∵∠ACB=45°,AD⊥BC,∴AD=CD=3﹣x
∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D
∴AD⊥平面BCD
∴VA﹣BCD= ×AD×S△BCD= ×(3﹣x)× ×x(3﹣x)= (x3﹣6x2+9x)
設f(x)= (x3﹣6x2+9x) x∈(0,3),
∵f′(x)= (x﹣1)(x﹣3),∴f(x)在(0,1)上為增函數,在(1,3)上為減函數
∴當x=1時,函數f(x)取最大值
∴當BD=1時,三棱錐A﹣BCD的體積最大
(2)解:以D為原點,建立如圖直角坐標系D﹣xyz,
由(1)知,三棱錐A﹣BCD的體積最大時,BD=1,AD=CD=2
∴D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E( ,1,0),且 =(﹣1,1,1)
設N(0,λ,0),則 =(﹣ ,λ﹣1,0)
∵EN⊥BM,∴ =0
即(﹣1,1,1)(﹣ ,λ﹣1,0)= +λ﹣1=0,∴λ= ,∴N(0, ,0)
∴當DN= 時,EN⊥BM
設平面BMN的一個法向量為 =(x,y,z),由 及 =(﹣1, ,0)
得 ,取 =(1,2,﹣1)
設EN與平面BMN所成角為θ,則 =(﹣ ,﹣ ,0)
sinθ=|cos< , >|=| |= =
∴θ=60°
∴EN與平面BMN所成角的大小為60°
【解析】(1)設BD=x,先利用線面垂直的判定定理證明AD即為三棱錐A﹣BCD的高,再將三棱錐的體積表示為x的函數,最后利用導數求函數的最大值即可;(2)由(1)可先建立空間直角坐標系,寫出相關點的坐標和相關向量的坐標,設出動點N的坐標,先利用線線垂直的充要條件計算出N點坐標,從而確定N點位置,再求平面BMN的法向量,從而利用夾角公式即可求得所求線面角
【考點精析】本題主要考查了用空間向量求直線與平面的夾角的相關知識點,需要掌握設直線的方向向量為,平面的法向量為,直線與平面所成的角為,與的夾角為, 則為的余角或的補角的余角.即有:才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】若函數h(x)滿足
①h(0)=1,h(1)=0;
②對任意a∈[0,1],有h(h(a))=a;
③在(0,1)上單調遞減.則稱h(x)為補函數.已知函數h(x)= (λ>﹣1,p>0)
(1)判函數h(x)是否為補函數,并證明你的結論;
(2)若存在m∈[0,1],使得h(m)=m,若m是函數h(x)的中介元,記p= (n∈N+)時h(x)的中介元為xn , 且Sn= ,若對任意的n∈N+ , 都有Sn< ,求λ的取值范圍;
(3)當λ=0,x∈(0,1)時,函數y=h(x)的圖象總在直線y=1﹣x的上方,求P的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代著名的數學著作有10部算書,被稱為“算經十書”.某校數學興趣小組甲、乙、丙、丁四名同學對古代著名的數學著作產生濃厚的興趣.一天,他們根據最近對這十部書的閱讀本數情況說了這些話,甲:“乙比丁少”;乙:“甲比丙多”;丙:“我比丁多”; 丁:“丙比乙多”,他們說的這些話中,只有一個人說的是真實的,而這個人正是他們四個人中讀書本數最少的一個(他們四個人對這十部書閱讀本數各不相同).甲、乙、丙、丁按各人讀書本數由少到多的排列是( )
A. 乙甲丙丁 B. 甲丁乙丙 C. 丙甲丁乙 D. 甲丙乙丁
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某共享單車企業(yè)在城市就“一天中一輛單車的平均成本與租用單車數量之間的關系”進行了調查,并將相關數據統(tǒng)計如下表:
根據以上數據,研究人員設計了兩種不同的回歸分析模型,得到兩個擬合函數:
模型甲:,模型乙:.
(1)為了評價兩種模型的擬合效果,完成以下任務:
①完成下表(計算結果精確到0.1元)(備注:,稱為相應于點的殘差);
②分別計算模型甲與模型乙的殘差平方和及,并通過比較的大小,判斷哪個模型擬合效果更好.
(2)這家企業(yè)在4城市投放共享單車后,受到廣大市民的熱烈歡迎并供不應求,于是該企業(yè)決定增加單車投放量.根據市場調查,市場投放量達到1萬輛時,平均每輛單車一天能收入7.2元;市場投放量達到1.2萬輛時,平均每輛單車一天能收入6.8元.若按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,問該企業(yè)投放量選擇1萬輛還是1.2萬輛能獲得更多利潤?請說明理由.(利潤收入成本)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓有以下性質:
①過圓上一點的圓的切線方程是.
②若不在坐標軸上的點為圓外一點,過作圓的兩條切線,切點分別為,則垂直,即.
(1)類比上述有關結論,猜想過橢圓上一點的切線方程 (不要求證明);
(2)若過橢圓外一點(不在坐標軸上)作兩直線,與橢圓相切于兩點,求證:為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(,且).
(Ⅰ)求函數的單調區(qū)間;
(Ⅱ)求函數在上的最大值.
【答案】(Ⅰ)的單調增區(qū)間為,單調減區(qū)間為.(Ⅱ)當時, ;當時, .
【解析】【試題分析】(I)利用的二階導數來研究求得函數的單調區(qū)間.(II) 由(Ⅰ)得在上單調遞減,在上單調遞增,由此可知.利用導數和對分類討論求得函數在不同取值時的最大值.
【試題解析】
(Ⅰ),
設 ,則.
∵, ,∴在上單調遞增,
從而得在上單調遞增,又∵,
∴當時, ,當時, ,
因此, 的單調增區(qū)間為,單調減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調遞減,在上單調遞增,
由此可知.
∵, ,
∴.
設,
則 .
∵當時, ,∴在上單調遞增.
又∵,∴當時, ;當時, .
①當時, ,即,這時, ;
②當時, ,即,這時, .
綜上, 在上的最大值為:當時, ;
當時, .
[點睛]本小題主要考查函數的單調性,考查利用導數求最大值. 與函數零點有關的參數范圍問題,往往利用導數研究函數的單調區(qū)間和極值點,并結合特殊點,從而判斷函數的大致圖像,討論其圖象與軸的位置關系,進而確定參數的取值范圍;或通過對方程等價變形轉化為兩個函數圖象的交點問題.
【題型】解答題
【結束】
22
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數方程和直線的直角坐標方程;
( Ⅱ ) 設直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為
(1)求頻率分布直方圖中的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產甲、乙兩種產品所得利潤分別為和(萬元),它們與投入資金(萬元)的關系有經驗公式,.今將120萬元資金投入生產甲、乙兩種產品,并要求對甲、乙兩種產品的投資金額都不低于20萬元.
(Ⅰ)設對乙產品投入資金萬元,求總利潤(萬元)關于的函數關系式及其定義域;
(Ⅱ)如何分配使用資金,才能使所得總利潤最大?最大利潤為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com