【題目】若函數(shù)h(x)滿(mǎn)足
①h(0)=1,h(1)=0;
②對(duì)任意a∈[0,1],有h(h(a))=a;
③在(0,1)上單調(diào)遞減.則稱(chēng)h(x)為補(bǔ)函數(shù).已知函數(shù)h(x)= (λ>﹣1,p>0)
(1)判函數(shù)h(x)是否為補(bǔ)函數(shù),并證明你的結(jié)論;
(2)若存在m∈[0,1],使得h(m)=m,若m是函數(shù)h(x)的中介元,記p= (n∈N+)時(shí)h(x)的中介元為xn , 且Sn= ,若對(duì)任意的n∈N+ , 都有Sn ,求λ的取值范圍;
(3)當(dāng)λ=0,x∈(0,1)時(shí),函數(shù)y=h(x)的圖象總在直線(xiàn)y=1﹣x的上方,求P的取值范圍.

【答案】
(1)

解:函數(shù)h(x)是補(bǔ)函數(shù),證明如下:

①h(0)= =1,h(1)= =0;

②任意a∈[0,1],有h(h(a))=h( )= =a

③令g(x)=(h(x))p,有g(shù)′(x)= =

又因?yàn)棣耍京?,p>0,

所以當(dāng)x∈(0,1)時(shí),g′(x)<0,所以g(x)在(0,1)上是減函數(shù),故h(x)在(0,1)上是減函數(shù)

由上證,函數(shù)h(x)是補(bǔ)函數(shù)


(2)

解:當(dāng)p= (n∈N*),由h(x)=x得 ,

(i)當(dāng)λ=0時(shí),中介元xn= ,

(ii)當(dāng)λ>﹣1且λ≠0時(shí),由(*)得 = ∈(0,1)或 = (0,1),得中介元xn=

綜合(i)(ii):對(duì)任意的λ>﹣1,中介元為xn= ,

于是當(dāng)λ>﹣1時(shí),有Sn= = = ,

當(dāng)n無(wú)限增大時(shí), 無(wú)限接近于0,Sn無(wú)限接近于 ,

故對(duì)任意的非零自然數(shù)n,Sn 等價(jià)于 ,即λ∈[3,+∞)


(3)

解:當(dāng)λ=0時(shí),h(x)= ,中介元為

<>(i)0<p≤1時(shí), ,中介元為 ,所以點(diǎn)(xp,h(xp))不在直線(xiàn)y=1﹣x的上方,不符合條件;

(ii)當(dāng)p>1時(shí),依題意只需 >1﹣x在x∈(0,1)時(shí)恒成立,也即xp+(1﹣x)p<1在x∈(0,1)時(shí)恒成立

設(shè)φ(x)=xp+(1﹣x)p,x∈(0,1),則φ′(x)=p(xp1﹣(1﹣x)p1

令φ′(x)=0,得x= ,且當(dāng)x∈(0, )時(shí),φ′(x)<0,當(dāng)x∈( ,1)時(shí),φ′(x)>0,又φ(0)=φ(1)=1,所以x∈(0,1)時(shí),φ(x)<1恒成立.

綜上,p的取值范圍是(1,+∞)


【解析】(1)可通過(guò)對(duì)函數(shù)h(x)= (λ>﹣1,p>0)進(jìn)行研究,探究其是否滿(mǎn)足補(bǔ)函數(shù)的三個(gè)條件來(lái)確定函數(shù)是否是補(bǔ)函數(shù);
(2)由題意,先根據(jù)中介元的定義得出中介元xn通式,代入Sn= ,計(jì)算出和,然后結(jié)合極限的思想,利用Sn 得到參數(shù)的不等式,解出它的取值范圍;
(3)λ=0,x∈(0,1)時(shí),對(duì)參數(shù)p分類(lèi)討論由函數(shù)y=h(x)的圖象總在直線(xiàn)y=1﹣x的上方這一位置關(guān)系進(jìn)行轉(zhuǎn)化,解出p的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對(duì)方再連續(xù)發(fā)球2次,依次輪換.每次發(fā)球,勝方得1分,負(fù)方得0分.設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立.甲、乙的一局比賽中,甲先發(fā)球.
(1)求開(kāi)始第4次發(fā)球時(shí),甲、乙的比分為1比2的概率;
(2)ξ表示開(kāi)始第4次發(fā)球時(shí)乙的得分,求ξ的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)市場(chǎng)調(diào)查,新街口某新開(kāi)業(yè)的商場(chǎng)在過(guò)去一個(gè)月內(nèi)(以30天計(jì)),顧客人數(shù)(千人)與時(shí)間(天)的函數(shù)關(guān)系近似滿(mǎn)足),人均消費(fèi)(元)與時(shí)間(天)的函數(shù)關(guān)系近似滿(mǎn)足

(1)求該商場(chǎng)的日收益(千元)與時(shí)間(天)(, )的函數(shù)關(guān)系式;

(2)求該商場(chǎng)日收益的最小值(千元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分,眾數(shù),中位數(shù);

(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如下表所示,求數(shù)學(xué)成績(jī)?cè)赱50,90)之外的人數(shù).

分?jǐn)?shù)段

[50,60)

[60,70)

[70,80)

[80,90)

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直.

(1)求函數(shù)的極值;

(2)若上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知在極坐標(biāo)系和直角坐標(biāo)系中,極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,直線(xiàn)為參數(shù)),圓.

(Ⅰ)將直線(xiàn)的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;

(Ⅱ)已知是直線(xiàn)上一點(diǎn),是圓上一點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),設(shè)

(1)f(-1)=0,且對(duì)任意實(shí)數(shù)x均有f(x)0成立,F(x)的表達(dá)式;

(2)(1)的條件下,當(dāng)x[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;

(3)設(shè)mn<0,m+n>0,a>0,f(x)滿(mǎn)足f(-x)=f(x),試比較F(m)+F(n)的值與0的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程x[0,2]時(shí)有唯一解,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,∠ACB=45°,BC=3,過(guò)動(dòng)點(diǎn)A作AD⊥BC,垂足D在線(xiàn)段BC上且異于點(diǎn)B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示),

(1)當(dāng)BD的長(zhǎng)為多少時(shí),三棱錐A﹣BCD的體積最大;
(2)當(dāng)三棱錐A﹣BCD的體積最大時(shí),設(shè)點(diǎn)E,M分別為棱BC,AC的中點(diǎn),試在棱CD上確定一點(diǎn)N,使得EN⊥BM,并求EN與平面BMN所成角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案