【題目】在一個(gè)不透明的箱子里裝有5個(gè)完全相同的小球,球上分別標(biāo)有數(shù)字1、2、3、4、5.甲先從箱子中摸出一個(gè)小球,記下球上所標(biāo)數(shù)字后,將該小球放回箱子中搖勻后,乙再從該箱子中摸出一個(gè)小球.
(1)若甲、乙兩人誰(shuí)摸出的球上標(biāo)的數(shù)字大誰(shuí)就獲勝(數(shù)字相同為平局),求甲獲勝的概率;
(2)規(guī)定:兩人摸到的球上所標(biāo)數(shù)字之和小于6,則甲獲勝,否則乙獲勝,這樣規(guī)定公平嗎?
【答案】(1) (2)不公平
【解析】用(x,y)(x表示甲摸到的數(shù)字,y表示乙摸到的數(shù)字)表示甲、乙各摸一球構(gòu)成基本事件,則基本事件為(1,1),(1,2)、(1,3)、(1,4)、(1,5)、(2,1)、(2,2)、(2,3)、(2,4)、(2、5)、(3,1)、(3,2)、(3,3)、(3,4)、(3、5)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(5,1)、(5,2)、(5,3)、(5,4)、(5,5),共25個(gè).
(1)設(shè)甲獲勝為事件A,則事件A包含的基本事件有(2,1)、(3,1)、(3,2)(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(5,3)、(5,4),共有10個(gè),則甲獲勝的概率為
(2)設(shè)甲獲勝的事件為B,乙獲勝的事件為C.事件B所包含的基本事件有(1,1),(1,2)、(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),共有10個(gè),則,所以.
因?yàn)?/span>,所以這樣規(guī)定不公平.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
(Ⅰ)當(dāng)(為自然對(duì)數(shù)的底數(shù))時(shí),求的極小值;
(Ⅱ)若函數(shù)存在唯一零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩陣將直線l:x+y-1=0變換成直線l′.
(1)求直線l′的方程;
(2)判斷矩陣A是否可逆?若可逆,求出矩陣A的逆矩陣A-1;若不可逆,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓錐曲線: (為參數(shù))和定點(diǎn), , 是此圓錐曲線的左、右焦點(diǎn).
(1)以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,求直線的極坐標(biāo)方程;
(2)經(jīng)過(guò)且與直線垂直的直線交此圓錐曲線于, 兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一臺(tái)機(jī)器由于使用時(shí)間較長(zhǎng),生產(chǎn)的零件有一些缺損,按不同轉(zhuǎn)速生產(chǎn)出來(lái)的零件有缺損的統(tǒng)計(jì)數(shù)據(jù)如下表所示.
(1)作出散點(diǎn)圖;
(2)如果y與x線性相關(guān),求出回歸直線方程;
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺損的零件最多為10個(gè),那么機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 16 | 14 | 12 | 8 |
每小時(shí)生產(chǎn)有缺損零件數(shù)y(個(gè)) | 11 | 9 | 8 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一盒中裝有除顏色外其余均相同的12個(gè)小球,從中隨機(jī)取出1個(gè)球,取出紅球的概率為,取出黑球的概率為,取出白球的概率為,取出綠球的概率為.求:
(1)取出的1個(gè)球是紅球或黑球的概率;
(2)取出的1個(gè)球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,底面是等腰直角三角形, ,側(cè)棱,點(diǎn)分別為棱的中點(diǎn), 的重心為,直線垂直于平面.
(1)求證:直線平面;
(2)求二面角的余弦.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,橢圓: 的上焦點(diǎn)為,橢圓的離心率為 ,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)過(guò)橢圓的上頂點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com