【題目】一盒中裝有除顏色外其余均相同的12個(gè)小球,從中隨機(jī)取出1個(gè)球,取出紅球的概率為,取出黑球的概率為,取出白球的概率為,取出綠球的概率為.求:

(1)取出的1個(gè)球是紅球或黑球的概率;

(2)取出的1個(gè)球是紅球或黑球或白球的概率.

【答案】(1) (2)

【解析】記事件A1={任取1球?yàn)榧t球};A2={任取1球?yàn)楹谇騷;A3={任取1

球?yàn)榘浊騷,A4={任取1球?yàn)榫G球},則P(A1)=,P(A2)=,P(A3)=,P(A4)=.根據(jù)題意,知事件A1,A2,A3,A4彼此互斥.

由互斥事件的概率公式,得

(1)取出1球是紅球或黑球的概率為P(A1∪A2)=P(A1)+P(A2)=

.

(2)取出1球是紅球或黑球或白球的概率為P(A1∪A2∪A3)=P(A1)+P(A2)

+P(A3)=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn)是橢圓 上一點(diǎn),從原點(diǎn)向圓 作兩條切線分別與橢圓交于點(diǎn), ,直線, 的斜率分別記為, . 

(1)求證: 為定值;

(2)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)確定函數(shù)在定義域上的單調(diào)性,并寫出詳細(xì)過程;

(2)若上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐曲線 為參數(shù))和定點(diǎn), , 是此圓錐曲線的左、右焦點(diǎn).

(1)以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,求直線的極坐標(biāo)方程;

(2)經(jīng)過且與直線垂直的直線交此圓錐曲線, 兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的箱子里裝有5個(gè)完全相同的小球,球上分別標(biāo)有數(shù)字1、2、3、4、5.甲先從箱子中摸出一個(gè)小球,記下球上所標(biāo)數(shù)字后,將該小球放回箱子中搖勻后,乙從該箱子中摸出一個(gè)小球.

1)若甲、乙兩人誰摸出的球上標(biāo)的數(shù)字大誰就獲勝(數(shù)字相同為平局),求甲獲勝的概率;

2規(guī)定:兩人摸到的球上所標(biāo)數(shù)字之和小于6則甲獲勝,否則乙獲勝,這樣規(guī)定公平嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】劉徽(約公元 225 —295 年)是魏晉時(shí)期偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國寶貴的古代數(shù)學(xué)遺產(chǎn). 《九章算術(shù)·商功》中有這樣一段話:斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:此術(shù)臑者,背節(jié)也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實(shí)這里所謂的鱉臑(biē nào,就是在對(duì)長方體進(jìn)行分割時(shí)所產(chǎn)生的四個(gè)面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面, 垂直于,且 ,則三棱錐的外接球的球面面積為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ),且曲線在點(diǎn)處的切線方程為

1)求實(shí)數(shù)的值及函數(shù)的最大值;

2當(dāng)時(shí),記函數(shù)的最小值為,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系,曲線C1的參數(shù)方程為 (α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為級(jí)軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程;

(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;

(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到曲線C2上的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,拋物線上存在一點(diǎn) 到焦點(diǎn)的距離等于

(1)求拋物線的方程;

(2)過點(diǎn)的直線與拋物線相交于,兩點(diǎn)(兩點(diǎn)在軸上方),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,且,求的外接圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案