【題目】某企業(yè)為了解某產(chǎn)品的銷售情況,選擇某個(gè)電商平臺對該產(chǎn)品銷售情況作調(diào)查.統(tǒng)計(jì)了一年內(nèi)的月銷售數(shù)量(單位:萬件),得到該電商平臺月銷售數(shù)量的莖葉圖.

1)求該電商平臺在這一年內(nèi)月銷售該產(chǎn)品數(shù)量的中位數(shù)和平均數(shù);

2)該企業(yè)與電商簽訂銷售合同時(shí)規(guī)定:如果電商平臺當(dāng)月的銷售件數(shù)不低于40萬件,當(dāng)月獎勵(lì)該電商平臺10萬元;當(dāng)月低于40萬件沒有獎勵(lì),用該樣本估計(jì)總體,從電商平臺一個(gè)年度內(nèi)高于該年月銷售平均數(shù)的月份中任取兩個(gè)月,求這兩個(gè)月企業(yè)發(fā)給電商平臺的獎金為20萬元的概率.

【答案】(1)中位數(shù)為33(萬件),平均數(shù)為32.5;(2)

【解析】

1)由莖葉圖可知,12個(gè)數(shù)據(jù)中間兩個(gè)數(shù)據(jù)為32,34,所以中位數(shù)為33,由平均數(shù)公式可計(jì)算出電商平臺的月銷售數(shù)量的平均數(shù);

2)一年內(nèi)月銷售量高于平均數(shù)的月份有6個(gè),其中這6個(gè)月能獲獎勵(lì)的月份有3個(gè)月,記為,不能獲獎勵(lì)的份為,列舉出從這6個(gè)月抽出的兩個(gè)月的所有可能情況,再找出抽到的兩個(gè)月都獲獎勵(lì)的可能情況,根據(jù)古典概型的概率公式即可求出.

1)由莖葉圖知,電商平臺的月銷售數(shù)量的中位數(shù)為33(萬件),

電商平臺的月銷售數(shù)量的平均數(shù)為:

(萬件).

2)由題知,一年內(nèi)月銷售量高于平均數(shù)的月份有6個(gè),其中這6個(gè)月能獲獎勵(lì)的月份有3個(gè)月,記為,不能獲獎勵(lì)的份為

記從一個(gè)年度內(nèi)高于該年月銷售平均數(shù)的月份中抽到的兩個(gè)月都獲獎勵(lì)的事件為

則從一個(gè)年度內(nèi)高于該年月銷售平均數(shù)的月份中抽出的兩個(gè)月的所有可能為:

共有15種可能.抽到的兩個(gè)月都獲獎勵(lì)的可能為:,共有3種,所以

所以,這兩個(gè)月企業(yè)發(fā)給電商平臺的獎金為20萬元的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】試比較下面概率的大小:

1)如果以連續(xù)擲兩次骰子依次得到的點(diǎn)數(shù)m,n作為點(diǎn)P的橫、縱坐標(biāo),點(diǎn)P在直線的下面包括直線的概率;

2)在正方形,,x,,隨機(jī)地投擲點(diǎn)P,求點(diǎn)P落在正方形T內(nèi)直線的下面包括直線的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,是橢圓上一點(diǎn),軸,.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線與橢圓交于、兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求實(shí)數(shù)的最大值;

(2)在(1)成立的條件下,正實(shí)數(shù),滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長與焦距分別為方程的兩個(gè)實(shí)數(shù)根.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線過點(diǎn)且與橢圓相交于兩點(diǎn),是橢圓的左焦點(diǎn),當(dāng)面積最大時(shí),求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了慶祝中華人民共和國成立70周年,某公司舉行大型抽獎活動,活動中準(zhǔn)備了一枚質(zhì)地均勻的正十二面體的骰子,在其十二個(gè)面上分別標(biāo)有數(shù)字1,2,3,…,12,每位員工均有一次參與機(jī)會,并規(guī)定:若第一次拋得向上面的點(diǎn)數(shù)為完全平方數(shù)(即能寫成整數(shù)的平方形式,如),則立即視為獲得大獎;若第一次拋得向上面的點(diǎn)數(shù)不是完全平方數(shù),則需進(jìn)行第二次拋擲,兩次拋得的點(diǎn)數(shù)和為完全平方數(shù)(如),也可視為獲得大獎.否則,只能獲得安慰獎.

1)試列舉須拋擲兩次才能獲得大獎的所有可能情況(用表示前后兩次拋得的點(diǎn)數(shù)),并說明所有可能情況的總數(shù);

2)若獲得大獎的獎金(單位:元)為拋得的點(diǎn)數(shù)或點(diǎn)數(shù)和(完全平方數(shù))的360倍,而安慰獎的獎金為48元,該公司某位員工獲得的獎金為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,ACBC,AB2BC,D為線段AB上一點(diǎn),且AD3DB,PD⊥平面ABCPA與平面ABC所成的角為45°

1)求證:平面PAB⊥平面PCD;

2)求二面角PACD的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有下列四個(gè)結(jié)論,其中所有正確結(jié)論的編號是___________.

①若,則的最大值為;

②若,,是等差數(shù)列的前項(xiàng),則

③“”的一個(gè)必要不充分條件是“”;

④“,”的否定為“,”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在多面體中,,,,且平面平面.

(1)設(shè)點(diǎn)為線段的中點(diǎn),試證明平面;

(2)若直線與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案